Difference between revisions of "009C Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 2: | Line 2: | ||
::::::<math>r=1+\sin\theta</math> | ::::::<math>r=1+\sin\theta</math> | ||
| − | <span class="exam">a) Sketch the curve. | + | ::<span class="exam">a) Sketch the curve. |
| − | <span class="exam">b) Compute <math style="vertical-align: -12px">y'=\frac{dy}{dx}</math>. | + | ::<span class="exam">b) Compute <math style="vertical-align: -12px">y'=\frac{dy}{dx}</math>. |
| − | <span class="exam">c) Compute <math style="vertical-align: -12px">y''=\frac{d^2y}{dx^2}</math>. | + | ::<span class="exam">c) Compute <math style="vertical-align: -12px">y''=\frac{d^2y}{dx^2}</math>. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 46: | Line 46: | ||
::<math>\frac{dr}{d\theta}=\cos\theta.</math> | ::<math>\frac{dr}{d\theta}=\cos\theta.</math> | ||
|- | |- | ||
| − | |Hence, <math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}.</math> | + | |Hence, |
| + | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}.</math> | ||
|} | |} | ||
| Line 99: | Line 102: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' See Step 1 above for the graph. | + | | '''(a)''' See Step 1 above for the graph. |
|- | |- | ||
| − | |'''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math> | + | | '''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math> |
|- | |- | ||
| − | |'''(c)''' <math>\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math> | + | | '''(c)''' <math>\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 18:38, 18 April 2016
A curve is given in polar coordinates by
- a) Sketch the curve.
- b) Compute .
- c) Compute .
| Foundations: |
|---|
| How do you calculate for a polar curve |
|
|
|
Solution:
(a)
| Step 1: |
|---|
| Insert sketch of graph |
(b)
| Step 1: |
|---|
| First, recall we have |
|
|
| Since |
|
|
| Hence, |
|
|
| Step 2: |
|---|
| Thus, we have
|
(c)
| Step 1: |
|---|
| We have |
| So, first we need to find |
| We have |
|
|
| since and |
| Step 2: |
|---|
| Now, using the resulting formula for we get |
|
|
| Final Answer: |
|---|
| (a) See Step 1 above for the graph. |
| (b) |
| (c) |