Difference between revisions of "009C Sample Final 1, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 3: | Line 3: | ||
::::::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math> | ::::::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math> | ||
− | <span class="exam">a) Find the radius of convergence of the power series. | + | ::<span class="exam">a) Find the radius of convergence of the power series. |
− | <span class="exam">b) Determine the interval of convergence of the power series. | + | ::<span class="exam">b) Determine the interval of convergence of the power series. |
− | <span class="exam">c) Obtain an explicit formula for the function <math style="vertical-align: -5px">f(x)</math>. | + | ::<span class="exam">c) Obtain an explicit formula for the function <math style="vertical-align: -5px">f(x)</math>. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 14: | Line 14: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then, | + | | |
+ | ::'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then, | ||
|- | |- | ||
| | | | ||
− | ::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent. | + | :::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent. |
|- | |- | ||
| | | | ||
− | ::If <math style="vertical-align: -1px">L>1,</math> the series is divergent. | + | :::If <math style="vertical-align: -1px">L>1,</math> the series is divergent. |
|- | |- | ||
| | | | ||
− | ::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive. | + | :::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive. |
|- | |- | ||
− | |'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval | + | | |
+ | ::'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval | ||
|- | |- | ||
| | | | ||
− | ::for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">L=1.</math> | + | :::for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">L=1.</math> |
|} | |} | ||
Line 100: | Line 102: | ||
|Now, we multiply the last equation in Step 1 by <math style="vertical-align: 0px">x.</math> | |Now, we multiply the last equation in Step 1 by <math style="vertical-align: 0px">x.</math> | ||
|- | |- | ||
− | |So, we have <math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x).</math> | + | |So, we have |
+ | |- | ||
+ | | | ||
+ | ::<math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x).</math> | ||
|- | |- | ||
|Thus, <math>f(x)=\frac{x}{(1-x)^2}.</math> | |Thus, <math>f(x)=\frac{x}{(1-x)^2}.</math> | ||
Line 108: | Line 113: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math style="vertical-align: -3px">1</math> | + | | '''(a)''' <math style="vertical-align: -3px">1</math> |
|- | |- | ||
− | |'''(b)''' <math style="vertical-align: -3px">(-1,1)</math> | + | | '''(b)''' <math style="vertical-align: -3px">(-1,1)</math> |
|- | |- | ||
− | |'''(c)''' <math style="vertical-align: -18px">f(x)=\frac{x}{(1-x)^2}</math> | + | | '''(c)''' <math style="vertical-align: -18px">f(x)=\frac{x}{(1-x)^2}</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:35, 18 April 2016
Let
- a) Find the radius of convergence of the power series.
- b) Determine the interval of convergence of the power series.
- c) Obtain an explicit formula for the function .
Foundations: |
---|
Recall: |
|
|
|
|
|
|
Solution:
(a)
Step 1: |
---|
To find the radius of convergence, we use the ratio test. We have |
|
Step 2: |
---|
Thus, we have and the radius of convergence of this series is |
(b)
Step 1: |
---|
From part (a), we know the series converges inside the interval |
Now, we need to check the endpoints of the interval for convergence. |
Step 2: |
---|
For the series becomes which diverges by the Divergence Test. |
Step 3: |
---|
For the series becomes which diverges by the Divergence Test. |
Thus, the interval of convergence is |
(c)
Step 1: |
---|
Recall that we have the geometric series formula for |
Now, we take the derivative of both sides of the last equation to get |
|
Step 2: |
---|
Now, we multiply the last equation in Step 1 by |
So, we have |
|
Thus, |
Final Answer: |
---|
(a) |
(b) |
(c) |