Difference between revisions of "009C Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Compute
 
<span class="exam">Compute
  
<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math>
+
::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math>
  
<span class="exam">b) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math>
+
::<span class="exam">b) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 10: Line 10:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''L'Hopital's Rule'''  
+
|
 +
::'''L'Hopital's Rule'''  
 
|-
 
|-
|Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
+
|
 +
::Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
Line 82: Line 84:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math style="vertical-align: -14px">\frac{-2}{5}</math>
+
|&nbsp;&nbsp; '''(a)''' <math style="vertical-align: -14px">\frac{-2}{5}</math>
 
|-
 
|-
|'''(b)''' <math style="vertical-align: -3px">1</math>  
+
|&nbsp;&nbsp; '''(b)''' <math style="vertical-align: -3px">1</math>  
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:17, 18 April 2016

Compute

a)
b)
Foundations:  
Recall:
L'Hopital's Rule
Suppose that and are both zero or both
If is finite or
then

Solution:

(a)

Step 1:  
First, we switch to the limit to so that we can use L'Hopital's rule.
So, we have
Step 2:  
Hence, we have

(b)

Step 1:  
Again, we switch to the limit to so that we can use L'Hopital's rule.
So, we have
Step 2:  
Hence, we have
Final Answer:  
   (a)
   (b)

Return to Sample Exam