Difference between revisions of "009C Sample Final 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam">Compute | <span class="exam">Compute | ||
− | <span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math> | + | ::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math> |
− | <span class="exam">b) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math> | + | ::<span class="exam">b) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 10: | Line 10: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''L'Hopital's Rule''' | + | | |
+ | ::'''L'Hopital's Rule''' | ||
|- | |- | ||
− | |Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> | + | | |
+ | ::Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> | ||
|- | |- | ||
| | | | ||
Line 82: | Line 84: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math style="vertical-align: -14px">\frac{-2}{5}</math> | + | | '''(a)''' <math style="vertical-align: -14px">\frac{-2}{5}</math> |
|- | |- | ||
− | |'''(b)''' <math style="vertical-align: -3px">1</math> | + | | '''(b)''' <math style="vertical-align: -3px">1</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:17, 18 April 2016
Compute
- a)
- b)
Foundations: |
---|
Recall: |
|
|
|
|
Solution:
(a)
Step 1: |
---|
First, we switch to the limit to so that we can use L'Hopital's rule. |
So, we have |
|
Step 2: |
---|
Hence, we have |
|
(b)
Step 1: |
---|
Again, we switch to the limit to so that we can use L'Hopital's rule. |
So, we have |
|
Step 2: |
---|
Hence, we have |
|
Final Answer: |
---|
(a) |
(b) |