Difference between revisions of "009B Sample Midterm 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 7: | Line 7: | ||
||Recall: | ||Recall: | ||
|- | |- | ||
− | |'''1.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval. | + | | |
+ | ::'''1.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval. | ||
|- | |- | ||
− | |'''2.''' See the Riemann sums (insert link) for more information. | + | | |
+ | ::'''2.''' See the Riemann sums (insert link) for more information. | ||
|} | |} | ||
Line 16: | Line 18: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math style="vertical-align: -5px">f(x)=\sin(x).</math> Each interval has length <math>\frac{\pi}{4}.</math> So, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is | + | |Let <math style="vertical-align: -5px">f(x)=\sin(x).</math> Each interval has length <math>\frac{\pi}{4}.</math> |
+ | |- | ||
+ | |So, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is | ||
|- | |- | ||
| | | | ||
Line 28: | Line 32: | ||
|- | |- | ||
| | | | ||
− | ::<math>\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)=\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)=\frac{\pi}{4}(\sqrt{2}+1).</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\pi}{4}(\sqrt{2}+1).}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 34: | Line 42: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math>\frac{\pi}{4}(\sqrt{2}+1)</math> | + | | <math>\frac{\pi}{4}(\sqrt{2}+1)</math> |
− | |||
− | |||
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 17:54, 18 April 2016
Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of
Foundations: |
---|
Recall: |
|
|
Solution:
Step 1: |
---|
Let Each interval has length |
So, the right-endpoint Riemann sum of on the interval is |
|
Step 2: |
---|
Thus, the right-endpoint Riemann sum is |
|
Final Answer: |
---|