Difference between revisions of "009B Sample Midterm 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of <math>G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math> | + | |What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of <math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math> |
|- | |- | ||
| | | | ||
| Line 13: | Line 13: | ||
|- | |- | ||
| | | | ||
| − | ::So, we have <math>G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math> | + | ::So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math> |
|- | |- | ||
| | | | ||
| − | ::By Part 1 of the Fundamental Theorem of Calculus, <math>G'(x)=-\frac{1}{1+x^{10}}.</math> | + | ::By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math> |
|} | |} | ||
Revision as of 18:09, 29 March 2016
State the fundamental theorem of calculus, and use this theorem to find the derivative of
| Foundations: |
|---|
| What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of |
|
|
|
Solution:
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of |
| Then, |
| Step 2: |
|---|
| First, we have |
| Now, let and |
| So, |
| Hence, by the Chain Rule. |
| Step 3: |
|---|
| Now, |
| By the Fundamental Theorem of Calculus, |
| Hence, |
| Final Answer: |
|---|
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of |
| Then, |