Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
|Recall the trig identities:  
 
|Recall the trig identities:  
 
|-
 
|-
|'''1.''' <math>\tan^2x+1=\sec^2x</math>
+
|'''1.''' <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math>
 
|-
 
|-
|'''2.''' <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
+
|'''2.''' <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
 
|-
 
|-
|How would you integrate <math>\tan x~dx?</math>
+
|How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use <math>u</math>-substitution. First, write <math>\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math>
+
::You could use <math style="vertical-align: 0px">u</math>-substitution. First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
 
|
 
|
::Now, let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx.</math> Thus,  
+
::Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Thus,  
 
|-
 
|-
 
|
 
|
Line 38: Line 38:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We start by writing <math>\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
+
|We start by writing <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
 
|-
 
|-
|Since <math>\tan^2x=\sec^2x-1,</math> we have  
+
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have  
 
|-
 
|-
 
|
 
|
Line 53: Line 53:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to use <math>u</math>-substitution for the first integral. Let <math>u=\tan(x).</math> Then, <math>du=\sec^2x~dx.</math> So, we have
+
|Now, we need to use <math>u</math>-substitution for the first integral. Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have
 
|-
 
|-
 
|
 
|
Line 68: Line 68:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math>\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
+
|For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
|Now, we let <math>u=\cos x.</math> Then, <math>du=-\sin x~dx.</math> So, we get  
+
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get  
 
|-
 
|-
 
|
 
|

Revision as of 17:34, 29 March 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Recall the trig identities:
1.
2.
How would you integrate
You could use -substitution. First, write
Now, let Then, Thus,

Solution:

(a)

Step 1:  
We start by writing
Since we have
Step 2:  
Now, we need to use -substitution for the first integral. Let Then, So, we have
Step 3:  
For the remaining integral, we also need to use -substitution. First, we write
Now, we let Then, So, we get

(b)

Step 1:  
One of the double angle formulas is Solving for we get
Plugging this identity into our integral, we get
Step 2:  
If we integrate the first integral, we get
Step 3:  
For the remaining integral, we need to use -substitution. Let Then, and Also, since this is a definite integral
and we are using -substitution, we need to change the bounds of integration. We have and
So, the integral becomes
Final Answer:  
(a)
(b)

Return to Sample Exam