Difference between revisions of "009B Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 10: | Line 10: | ||
|Recall the trig identities: | |Recall the trig identities: | ||
|- | |- | ||
− | |'''1.''' <math>\tan^2x+1=\sec^2x</math> | + | |'''1.''' <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math> |
|- | |- | ||
− | |'''2.''' <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math> | + | |'''2.''' <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math> |
|- | |- | ||
− | |How would you integrate <math>\tan x~dx?</math> | + | |How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math> |
|- | |- | ||
| | | | ||
− | ::You could use <math>u</math>-substitution. First, write <math>\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math> | + | ::You could use <math style="vertical-align: 0px">u</math>-substitution. First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math> |
|- | |- | ||
| | | | ||
− | ::Now, let <math>u=\cos(x)</math> | + | ::Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Thus, |
|- | |- | ||
| | | | ||
Line 38: | Line 38: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We start by writing <math>\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math> | + | |We start by writing <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math> |
|- | |- | ||
− | |Since <math>\tan^2x=\sec^2x-1,</math> we have | + | |Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have |
|- | |- | ||
| | | | ||
Line 53: | Line 53: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we need to use <math>u</math>-substitution for the first integral. Let <math>u=\tan(x).</math> Then, <math>du=\sec^2x~dx.</math> So, we have | + | |Now, we need to use <math>u</math>-substitution for the first integral. Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have |
|- | |- | ||
| | | | ||
Line 68: | Line 68: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
− | |For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math>\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> | + | |For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> |
|- | |- | ||
− | |Now, we let <math>u=\cos x.</math> Then, <math>du=-\sin x~dx.</math> So, we get | + | |Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get |
|- | |- | ||
| | | |
Revision as of 17:34, 29 March 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
Recall the trig identities: |
1. |
2. |
How would you integrate |
|
|
|
Solution:
(a)
Step 1: |
---|
We start by writing |
Since we have |
|
Step 2: |
---|
Now, we need to use -substitution for the first integral. Let Then, So, we have |
|
Step 3: |
---|
For the remaining integral, we also need to use -substitution. First, we write |
Now, we let Then, So, we get |
|
(b)
Step 1: |
---|
One of the double angle formulas is Solving for we get |
Plugging this identity into our integral, we get |
|
Step 2: |
---|
If we integrate the first integral, we get |
|
Step 3: |
---|
For the remaining integral, we need to use -substitution. Let Then, and Also, since this is a definite integral |
and we are using -substitution, we need to change the bounds of integration. We have and |
So, the integral becomes |
|
Final Answer: |
---|
(a) |
(b) |