Difference between revisions of "009B Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 20: | Line 20: | ||
|- | |- | ||
| | | | ||
− | ::Now, let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx.</math> | + | ::Now, let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx.</math> Thus, |
|- | |- | ||
| | | | ||
− | :: | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\ln(u)+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\ln|\cos x|+C.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 37: | Line 43: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int \tan^3x~dx=\int (\sec^2x-1)\tan x ~dx=\int \sec^2x\tan x~dx-\int \tan x~dx.</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int \sec^2x\tan x~dx-\int \tan x~dx.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 46: | Line 56: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int \tan^3x~dx=\int u~du-\int \tan x~dx=\frac{u^2}{2}-\int \tan x~dx=\frac{\tan^2x}{2}-\int \tan x~dx.</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{u^2}{2}-\int \tan x~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\tan^2x}{2}-\int \tan x~dx.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 57: | Line 73: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int \tan^3x~dx=\frac{\tan^2x}{2}+\int \frac{1}{u}~dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C.</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\tan^2x}{2}+\ln |u|+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\tan^2x}{2}+\ln |\cos x|+C.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
+ | |||
'''(b)''' | '''(b)''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 68: | Line 91: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}~dx=\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx.</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 77: | Line 104: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx.</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 90: | Line 121: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}.</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\pi}{2}.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Revision as of 17:14, 29 March 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
Recall the trig identities: |
1. |
2. |
How would you integrate |
|
|
|
Solution:
(a)
Step 1: |
---|
We start by writing |
Since we have |
|
Step 2: |
---|
Now, we need to use -substitution for the first integral. Let Then, So, we have |
|
Step 3: |
---|
For the remaining integral, we also need to use -substitution. First, we write |
Now, we let Then, So, we get |
|
(b)
Step 1: |
---|
One of the double angle formulas is Solving for we get |
Plugging this identity into our integral, we get |
|
Step 2: |
---|
If we integrate the first integral, we get |
|
Step 3: |
---|
For the remaining integral, we need to use -substitution. Let Then, and Also, since this is a definite integral |
and we are using -substitution, we need to change the bounds of integration. We have and |
So, the integral becomes |
|
Final Answer: |
---|
(a) |
(b) |