Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|-
 
|-
 
|
 
|
::<math>\int 2x(x^2+1)^3~dx=\int u^3~du=\frac{u^4}{4}+C=\frac{(x^2+1)^4}{4}+C.</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{u^4}{4}+C}\\
 +
&& \\
 +
& = & \displaystyle{\frac{(x^2+1)^4}{4}+C.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 37: Line 43:
 
|-
 
|-
 
|
 
|
::<math>\int x^2\sin (x^3) ~dx=\frac{-1}{3}\cos(u)+C=\frac{-1}{3}\cos(x^3)+C.</math>
+
::::<math>\begin{array}{rcl}
 +
\displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-1}{3}\cos(x^3)+C.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 57: Line 67:
 
|-
 
|-
 
|
 
|
::<math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx=\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du=\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}=0.</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\
 +
&&\\
 +
& = & \displaystyle{\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}}\\
 +
&&\\
 +
& = & \displaystyle{0.} \\
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 17:02, 29 March 2016

Compute the following integrals:

a)
b)


Foundations:  
How would you integrate
You could use -substitution. Let Then, Thus,

Solution:

(a)

Step 1:  
We proceed using -substitution. Let Then, and
Therefore, we have
Step 2:  
We integrate to get

(b)

Step 1:  
Again, we proceed using u substitution. Let Then,
Since this is a definite integral, we need to change the bounds of integration.
We have and
Step 2:  
So, we get
Final Answer:  
(a)
(b)

Return to Sample Exam