Difference between revisions of "009B Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
|'''The Fundamental Theorem of Calculus, Part 1'''  
 
|'''The Fundamental Theorem of Calculus, Part 1'''  
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|-
|Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
+
|Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x).</math>
 
|-
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f.</math>
 
|-
 
|-
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
+
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
|}
  
Line 41: Line 41:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|First, we have <math>F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du</math>.
+
|First, we have <math>F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|-
|Now, let <math>g(x)=\cos(x)</math> and <math>G(x)=\int_5^x \frac{1}{1+u^{10}}~du</math>  
+
|Now, let <math>g(x)=\cos(x)</math> and <math>G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math>  
 
|-
 
|-
|So, <math>F(x)=-G(g(x))</math>.
+
|So, <math>F(x)=-G(g(x)).</math>
 
|-
 
|-
 
|Hence, <math>F'(x)=-G'(g(x))g'(x)</math> by the Chain Rule.
 
|Hence, <math>F'(x)=-G'(g(x))g'(x)</math> by the Chain Rule.
Line 53: Line 53:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Now, <math>g'(x)=-\sin(x)</math>.
+
|Now, <math>g'(x)=-\sin(x).</math>
 
|-
 
|-
| By the Fundamental Theorem of Calculus, <math>G'(x)=\frac{1}{1+x^{10}}</math>.
+
| By the Fundamental Theorem of Calculus, <math>G'(x)=\frac{1}{1+x^{10}}.</math>
 
|-
 
|-
|Hence, <math>F'(x)=-\frac{1}{1+\cos^{10}x}(-\sin(x))=\frac{\sin(x)}{1+\cos^{10}x}</math>
+
|Hence, <math>F'(x)=-\frac{1}{1+\cos^{10}x}(-\sin(x))=\frac{\sin(x)}{1+\cos^{10}x}.</math>
 
|-
 
|-
 
|
 
|
Line 67: Line 67:
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|-
|Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
+
|Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x).</math>
 
|-
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f.</math>
 
|-
 
|-
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
+
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|-
 
|-
| <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
+
|<math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:38, 29 March 2016

State the fundamental theorem of calculus, and use this theorem to find the derivative of


Foundations:  
What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of
First, we need to switch the bounds of integration.
So, we have
By Part 1 of the Fundamental Theorem of Calculus,

Solution:

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let
Then, is a differentiable function on and
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of
Then,
Step 2:  
First, we have
Now, let and
So,
Hence, by the Chain Rule.
Step 3:  
Now,
By the Fundamental Theorem of Calculus,
Hence,
Final Answer:  
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let
Then, is a differentiable function on and
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of
Then,

Return to Sample Exam