Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
::You could use <math>u</math>-substitution. Let <math>u=x^2+1</math>. Then, <math>du=2xdx</math>.
+
::You could use <math>u</math>-substitution. Let <math>u=x^2+1.</math> Then, <math>du=2x~dx.</math> Thus,
 
|-
 
|-
 
|
 
|
::Thus, <math>\int 2x(x^2+1)^3~dx=\int u^3~du=\frac{u^4}{4}+C=\frac{(x^2+1)^4}{4}+C</math>.
+
::<math>\int 2x(x^2+1)^3~dx=\int u^3~du=\frac{u^4}{4}+C=\frac{(x^2+1)^4}{4}+C.</math>
 
|}
 
|}
  
Line 23: Line 23:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using <math>u</math>-substitution. Let <math>u=x^3</math>. Then, <math>du=3x^2dx</math> and <math>\frac{du}{3}=x^2dx</math>.
+
|We proceed using <math>u</math>-substitution. Let <math>u=x^3.</math> Then, <math>du=3x^2~dx</math> and <math>\frac{du}{3}=x^2~dx.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have
 
|-
 
|-
|<math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du</math>
+
|
 +
::<math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math>
 
|}
 
|}
  
Line 35: Line 36:
 
|We integrate to get
 
|We integrate to get
 
|-
 
|-
|<math>\int x^2\sin (x^3) ~dx=\frac{-1}{3}\cos(u)+C=\frac{-1}{3}\cos(x^3)+C</math>
+
|
 +
::<math>\int x^2\sin (x^3) ~dx=\frac{-1}{3}\cos(u)+C=\frac{-1}{3}\cos(x^3)+C.</math>
 
|}
 
|}
  
Line 42: Line 44:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Again, we proceed using u substitution. Let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math>.
+
|Again, we proceed using u substitution. Let <math>u=\cos(x).</math> Then, <math>du=-\sin(x)~dx.</math>  
 
|-
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.  
 
|Since this is a definite integral, we need to change the bounds of integration.  
 
|-
 
|-
|We have <math>u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math>.
+
|We have <math>u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math>
 
|}
 
|}
  
Line 54: Line 56:
 
|So, we get  
 
|So, we get  
 
|-
 
|-
|<math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx=\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du=\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}=0</math>
+
|
 +
::<math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx=\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du=\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}=0.</math>
 
|}
 
|}
  

Revision as of 16:36, 29 March 2016

Compute the following integrals:

a)
b)


Foundations:  
How would you integrate
You could use -substitution. Let Then, Thus,

Solution:

(a)

Step 1:  
We proceed using -substitution. Let Then, and
Therefore, we have
Step 2:  
We integrate to get

(b)

Step 1:  
Again, we proceed using u substitution. Let Then,
Since this is a definite integral, we need to change the bounds of integration.
We have and
Step 2:  
So, we get
Final Answer:  
(a)
(b)

Return to Sample Exam