Difference between revisions of "009B Sample Midterm 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam">Divide the interval <math>[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math>y=\sin (x)</math> | + | <span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math style="vertical-align: -5px">y=\sin (x).</math> |
Line 16: | Line 16: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math>f(x)=\sin(x)</math> | + | |Let <math style="vertical-align: -5px">f(x)=\sin(x).</math> Each interval has length <math>\frac{\pi}{4}.</math> So, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is |
|- | |- | ||
− | |<math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg)</math> | + | | |
+ | ::<math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg).</math> | ||
|} | |} | ||
Line 26: | Line 27: | ||
|Thus, the right-endpoint Riemann sum is | |Thus, the right-endpoint Riemann sum is | ||
|- | |- | ||
− | |<math>\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)=\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)=\frac{\pi}{4}(\sqrt{2}+1)</math> | + | | |
+ | ::<math>\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)=\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)=\frac{\pi}{4}(\sqrt{2}+1).</math> | ||
|} | |} | ||
Revision as of 16:31, 29 March 2016
Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of
Foundations: |
---|
Recall: |
1. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval. |
2. See the Riemann sums (insert link) for more information. |
Solution:
Step 1: |
---|
Let Each interval has length So, the right-endpoint Riemann sum of on the interval is |
|
Step 2: |
---|
Thus, the right-endpoint Riemann sum is |
|
Final Answer: |
---|