Difference between revisions of "009B Sample Midterm 2, Problem 4"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs) | Kayla Murray (talk | contribs)  | ||
| Line 7: | Line 7: | ||
| !Foundations:     | !Foundations:     | ||
| |- | |- | ||
| − | |Integration by parts tells us <math>\int u~dv=uv-\int v~du</math> | + | |Integration by parts tells us <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math> | 
| |- | |- | ||
| − | |How would you integrate <math>\int e^x\sin x~dx?</math> | + | |How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math> | 
| |- | |- | ||
| | | | | ||
| Line 15: | Line 15: | ||
| |- | |- | ||
| | | | | ||
| − | ::Let <math>u=\sin(x)</math> and <math>dv=e^ | + | ::Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | 
| |- | |- | ||
| | | | | ||
| − | ::Thus, <math>\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx</math> | + | ::Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math> | 
| |- | |- | ||
| | | | | ||
| Line 24: | Line 24: | ||
| |- | |- | ||
| | | | | ||
| − | ::Let <math>u=\cos(x)</math> and <math>dv=e^ | + | ::Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> So, | 
| |- | |- | ||
| | | | | ||
| − | + | ::<math>\begin{array}{rcl} | |
| \displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\ | \displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\ | ||
| &&\\ | &&\\ | ||
| − | & = & \displaystyle{e^x(\sin(x)-\cos(x))-\int e^x\sin(x)~dx} | + | & = & \displaystyle{e^x(\sin(x)-\cos(x))-\int e^x\sin(x)~dx.}\\ | 
| \end{array}</math> | \end{array}</math> | ||
| |- | |- | ||
| Line 37: | Line 37: | ||
| |- | |- | ||
| | | | | ||
| − | ::<math>2\int e^x\sin (x)~dx=e^x(\sin(x)-\cos(x))</math> | + | ::<math>2\int e^x\sin (x)~dx=e^x(\sin(x)-\cos(x)).</math> | 
| |- | |- | ||
| | | | | ||
| − | ::Hence, <math>\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C</math> | + | ::Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math> | 
| |} | |} | ||
Revision as of 16:25, 29 March 2016
Evaluate the integral:
| Foundations: | 
|---|
| Integration by parts tells us | 
| How would you integrate | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
|  | 
| 
 | 
|  | 
| 
 | 
Solution:
| Step 1: | 
|---|
| We proceed using integration by parts. Let and . Then, and . | 
| So, we get | 
| . | 
| Step 2: | 
|---|
| Now, we need to use integration by parts again. Let and . Then, and . | 
| So, we get | 
| . | 
| Step 3: | 
|---|
| Notice that the integral on the right of the last equation in Step 2 is the same integral that we had at the beginning of the problem. | 
| So, if we add the integral on the right to the other side of the equation, we get | 
| . | 
| Now, we divide both sides by 2 to get | 
| . | 
| Thus, the final answer is . | 
| Final Answer: | 
|---|