Difference between revisions of "009B Sample Midterm 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |Integration by parts tells us <math>\int u~dv=uv-\int v~du</math> | + | |Integration by parts tells us <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math> |
|- | |- | ||
− | |How would you integrate <math>\int e^x\sin x~dx?</math> | + | |How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math> |
|- | |- | ||
| | | | ||
Line 15: | Line 15: | ||
|- | |- | ||
| | | | ||
− | ::Let <math>u=\sin(x)</math> and <math>dv=e^ | + | ::Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
| | | | ||
− | ::Thus, <math>\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx</math> | + | ::Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math> |
|- | |- | ||
| | | | ||
Line 24: | Line 24: | ||
|- | |- | ||
| | | | ||
− | ::Let <math>u=\cos(x)</math> and <math>dv=e^ | + | ::Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> So, |
|- | |- | ||
| | | | ||
− | + | ::<math>\begin{array}{rcl} | |
\displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\ | \displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{e^x(\sin(x)-\cos(x))-\int e^x\sin(x)~dx} | + | & = & \displaystyle{e^x(\sin(x)-\cos(x))-\int e^x\sin(x)~dx.}\\ |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
Line 37: | Line 37: | ||
|- | |- | ||
| | | | ||
− | ::<math>2\int e^x\sin (x)~dx=e^x(\sin(x)-\cos(x))</math> | + | ::<math>2\int e^x\sin (x)~dx=e^x(\sin(x)-\cos(x)).</math> |
|- | |- | ||
| | | | ||
− | ::Hence, <math>\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C</math> | + | ::Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math> |
|} | |} | ||
Revision as of 16:25, 29 March 2016
Evaluate the integral:
Foundations: |
---|
Integration by parts tells us |
How would you integrate |
|
|
|
|
|
|
|
|
|
Solution:
Step 1: |
---|
We proceed using integration by parts. Let and . Then, and . |
So, we get |
. |
Step 2: |
---|
Now, we need to use integration by parts again. Let and . Then, and . |
So, we get |
. |
Step 3: |
---|
Notice that the integral on the right of the last equation in Step 2 is the same integral that we had at the beginning of the problem. |
So, if we add the integral on the right to the other side of the equation, we get |
. |
Now, we divide both sides by 2 to get |
. |
Thus, the final answer is . |
Final Answer: |
---|