Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
| How would you integrate <math>\int \frac{\ln x}{x}~dx</math>?
+
| How would you integrate <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use <math>u</math>-substitution. Let <math>u=\ln(x)</math>. Then, <math>du=\frac{1}{x}dx</math>.
+
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\ln(x).</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
 
|-
 
|-
 
|
 
|
::Thus, <math>\int \frac{\ln x}{x}~dx=\int u~du=\frac{u^2}{2}+C=\frac{(\ln x)^2}{2}+C</math>.
+
::Thus, <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx=\int u~du=\frac{u^2}{2}+C=\frac{(\ln x)^2}{2}+C.</math>
 
|}
 
|}
  

Revision as of 08:44, 29 March 2016

Evaluate the indefinite and definite integrals.

a)
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx}


Foundations:  
How would you integrate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{\ln x}{x}~dx?}
You could use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln(x).} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{1}{x}dx.}
Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{\ln x}{x}~dx=\int u~du=\frac{u^2}{2}+C=\frac{(\ln x)^2}{2}+C.}

Solution:

(a)

Step 1:  
We need to use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=1+x^3} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=3x^2dx} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{3}=x^2dx} .
Therefore, the integral becomes  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}\int \sqrt{u}~du} .
Step 2:  
We now have:
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C} .

(b)

Step 1:  
Again, we need to use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sin(x)} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\cos(x)dx} . Also, we need to change the bounds of integration.
Plugging in our values into the equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sin(x)} , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1} .
Therefore, the integral becomes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du} .
Step 2:  
We now have:
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}} .
Final Answer:  
(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{9}(1+x^3)^{\frac{3}{2}}+C}
(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1+\sqrt{2}}

Return to Sample Exam