Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 34: Line 34:
 
|We start by writing <math>\int \tan^3x~dx=\int \tan^2x\tan x ~dx</math>.  
 
|We start by writing <math>\int \tan^3x~dx=\int \tan^2x\tan x ~dx</math>.  
 
|-
 
|-
|Since <math>\tan^2x=\sec^2x-1</math>, we have <math>\int \tan^3x~dx=\int (\sec^2x-1)\tan x ~dx=\int \sec^2x\tan x~dx-\int \tan x~dx</math>.  
+
|Since <math>\tan^2x=\sec^2x-1</math>, we have  
 +
|-
 +
|
 +
::<math>\int \tan^3x~dx=\int (\sec^2x-1)\tan x ~dx=\int \sec^2x\tan x~dx-\int \tan x~dx</math>.  
 
|}
 
|}
  
Line 42: Line 45:
 
|Now, we need to use <math>u</math>-substitution for the first integral. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2xdx</math>. So, we have
 
|Now, we need to use <math>u</math>-substitution for the first integral. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2xdx</math>. So, we have
 
|-
 
|-
|<math>\int \tan^3x~dx=\int u~du-\int \tan x~dx=\frac{u^2}{2}-\int \tan x~dx=\frac{\tan^2x}{2}-\int \tan x~dx</math>.
+
|
 +
::<math>\int \tan^3x~dx=\int u~du-\int \tan x~dx=\frac{u^2}{2}-\int \tan x~dx=\frac{\tan^2x}{2}-\int \tan x~dx</math>.
 
|}
 
|}
  
Line 52: Line 56:
 
|Now, we let <math>u=\cos x</math>. Then, <math>du=-\sin xdx</math>. So, we get  
 
|Now, we let <math>u=\cos x</math>. Then, <math>du=-\sin xdx</math>. So, we get  
 
|-
 
|-
|<math>\int \tan^3x~dx=\frac{\tan^2x}{2}+\int \frac{1}{u}~dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C</math>.
+
|
 +
::<math>\int \tan^3x~dx=\frac{\tan^2x}{2}+\int \frac{1}{u}~dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C</math>.
 
|}
 
|}
 
'''(b)'''
 
'''(b)'''
Line 60: Line 65:
 
|One of the double angle formulas is <math>\cos(2x)=1-2\sin^2(x)</math>. Solving for <math>\sin^2(x)</math>, we get <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math>.
 
|One of the double angle formulas is <math>\cos(2x)=1-2\sin^2(x)</math>. Solving for <math>\sin^2(x)</math>, we get <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math>.
 
|-
 
|-
|Plugging this identity into our integral, we get <math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}~dx=\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx</math>.  
+
|Plugging this identity into our integral, we get  
 +
|-
 +
|
 +
::<math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}~dx=\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx</math>.  
 
|}
 
|}
  
Line 67: Line 75:
 
|-
 
|-
 
|If we integrate the first integral, we get  
 
|If we integrate the first integral, we get  
|-
 
|<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx</math>.
 
 
|-
 
|-
 
|
 
|
 +
::<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx</math>.
 
|}
 
|}
  
Line 82: Line 89:
 
|So, the integral becomes
 
|So, the integral becomes
 
|-
 
|-
|<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}</math>
+
|
 +
::<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}</math>
 
|}
 
|}
  

Revision as of 18:09, 28 March 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Recall the trig identities:
1.
2.
How would you integrate
You could use -substitution. First, write .
Now, let . Then, .
Thus, .

Solution:

(a)

Step 1:  
We start by writing .
Since , we have
.
Step 2:  
Now, we need to use -substitution for the first integral. Let . Then, . So, we have
.
Step 3:  
For the remaining integral, we also need to use -substitution. First, we write .
Now, we let . Then, . So, we get
.

(b)

Step 1:  
One of the double angle formulas is . Solving for , we get .
Plugging this identity into our integral, we get
.
Step 2:  
If we integrate the first integral, we get
.
Step 3:  
For the remaining integral, we need to use -substitution. Let . Then, and . Also, since this is a definite integral
and we are using -substitution, we need to change the bounds of integration. We have and .
So, the integral becomes
Final Answer:  
(a)
(b)

Return to Sample Exam