Difference between revisions of "009A Sample Final 1, Problem 9"
Jump to navigation
Jump to search
Line 11: | Line 11: | ||
<span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>. | <span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>. | ||
− | + | == 1 == | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
Line 27: | Line 27: | ||
'''Solution:''' | '''Solution:''' | ||
− | + | == 2 == | |
'''(a)''' | '''(a)''' | ||
Line 55: | Line 55: | ||
|Thus, <math style="vertical-align: -5px">f(x)</math> is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty)</math> and decreasing on <math style="vertical-align: -5px">(0,4).</math> | |Thus, <math style="vertical-align: -5px">f(x)</math> is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty)</math> and decreasing on <math style="vertical-align: -5px">(0,4).</math> | ||
|} | |} | ||
− | + | == 3 == | |
'''(b)''' | '''(b)''' | ||
Line 69: | Line 69: | ||
|So, the local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math> | |So, the local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math> | ||
|} | |} | ||
− | + | == 4 == | |
'''(c)''' | '''(c)''' | ||
Line 97: | Line 97: | ||
|Thus, <math style="vertical-align: -5px">f(x)</math> is concave up on the interval <math style="vertical-align: -5px">(2,\infty)</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math> | |Thus, <math style="vertical-align: -5px">f(x)</math> is concave up on the interval <math style="vertical-align: -5px">(2,\infty)</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math> | ||
|} | |} | ||
− | + | == 5 == | |
'''(d)''' | '''(d)''' | ||
Line 109: | Line 109: | ||
|So, the inflection point is <math style="vertical-align: -5px">(2,-11).</math> | |So, the inflection point is <math style="vertical-align: -5px">(2,-11).</math> | ||
|} | |} | ||
− | + | == 6 == | |
'''(e)''' | '''(e)''' | ||
Line 117: | Line 117: | ||
| Insert sketch here. | | Insert sketch here. | ||
|} | |} | ||
− | + | == 7 == | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: |
Revision as of 13:52, 4 March 2016
Given the function ,
a) Find the intervals in which the function increases or decreases.
b) Find the local maximum and local minimum values.
c) Find the intervals in which the function concaves upward or concaves downward.
d) Find the inflection point(s).
e) Use the above information (a) to (d) to sketch the graph of .
1
Foundations: |
---|
Recall: |
1. is increasing when and is decreasing when |
2. The First Derivative Test tells us when we have a local maximum or local minimum. |
3. is concave up when and is concave down when |
4. Inflection points occur when |
Solution:
2
(a)
Step 1: |
---|
We start by taking the derivative of We have |
Now, we set So, we have |
Hence, we have and |
So, these values of break up the number line into 3 intervals: |
Step 2: |
---|
To check whether the function is increasing or decreasing in these intervals, we use testpoints. |
For |
For |
For |
Thus, is increasing on and decreasing on |
3
(b)
Step 1: |
---|
By the First Derivative Test, the local maximum occurs at and the local minimum occurs at |
Step 2: |
---|
So, the local maximum value is and the local minimum value is |
4
(c)
Step 1: |
---|
To find the intervals when the function is concave up or concave down, we need to find |
We have |
We set |
So, we have Hence, |
This value breaks up the number line into two intervals: |
Step 2: |
---|
Again, we use test points in these two intervals. |
For we have |
For we have |
Thus, is concave up on the interval and concave down on the interval |
5
(d)
Step 1: |
---|
Using the information from part (c), there is one inflection point that occurs at |
Now, we have |
So, the inflection point is |
6
(e)
Step 1: |
---|
Insert sketch here. |
7
Final Answer: |
---|
(a) is increasing on and decreasing on |
(b) The local maximum value is and the local minimum value is |
(c) is concave up on the interval and concave down on the interval |
(d) |
(e) See Step 1 for graph. |