Difference between revisions of "009A Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
  
 
<span class="exam">b) Find an equation of the tangent line to the curve <math style="vertical-align: -4px">x^3+y^3=6xy</math> at the point <math style="vertical-align: -5px">(3,3)</math>.
 
<span class="exam">b) Find an equation of the tangent line to the curve <math style="vertical-align: -4px">x^3+y^3=6xy</math> at the point <math style="vertical-align: -5px">(3,3)</math>.
 
+
== 1 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
Line 27: Line 27:
  
 
'''Solution:'''
 
'''Solution:'''
 
+
== 2 ==
 
'''(a)'''
 
'''(a)'''
  
Line 51: Line 51:
 
|We solve to get <math style="vertical-align: -12px">\frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}.</math>
 
|We solve to get <math style="vertical-align: -12px">\frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}.</math>
 
|}
 
|}
 
+
== 3 ==
 
'''(b)'''
 
'''(b)'''
  
Line 79: Line 79:
 
::<math>y=-1(x-3)+3.</math>
 
::<math>y=-1(x-3)+3.</math>
 
|}
 
|}
 
+
== 4 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 12:21, 4 March 2016

A curve is defined implicitly by the equation

a) Using implicit differentiation, compute  .

b) Find an equation of the tangent line to the curve at the point .

1

Foundations:  
1. What is the implicit differentiation of
It would be by the Product Rule.
2. What two pieces of information do you need to write the equation of a line?
You need the slope of the line and a point on the line.
3. What is the slope of the tangent line of a curve?
The slope is

Solution:

2

(a)

Step 1:  
Using implicit differentiation on the equation we get
Step 2:  
Now, we move all the terms to one side of the equation.
So, we have
We solve to get

3

(b)

Step 1:  
First, we find the slope of the tangent line at the point
We plug in into the formula for we found in part (a).
So, we get
Step 2:  
Now, we have the slope of the tangent line at and a point.
Thus, we can write the equation of the line.
So, the equation of the tangent line at is

4

Final Answer:  
(a)
(b)

Return to Sample Exam