Difference between revisions of "009A Sample Final 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
| Line 3: | Line 3: | ||
::::::<math>f(x)=3x-2\sin x+7</math> | ::::::<math>f(x)=3x-2\sin x+7</math> | ||
| − | <span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: - | + | <span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>  has at least one zero. |
| − | <span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: - | + | <span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>  has at most one zero. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 12: | Line 12: | ||
|Recall: | |Recall: | ||
|- | |- | ||
| − | |'''1. Intermediate Value Theorem''' If <math style="vertical-align: -5px">f(x)</math> is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: | + | |'''1. Intermediate Value Theorem:''' If <math style="vertical-align: -5px">f(x)</math>  is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: 0px">c</math> is any number |
|- | |- | ||
| | | | ||
| − | ::between <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b)</math>, then there is at least one number <math style="vertical-align: | + | ::between <math style="vertical-align: -5px">f(a)</math>  and <math style="vertical-align: -5px">f(b)</math>, then there is at least one number <math style="vertical-align: 0px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math> |
|- | |- | ||
| − | |'''2. Mean Value Theorem''' Suppose <math style="vertical-align: -5px">f(x)</math> is a function that satisfies the following: | + | |'''2. Mean Value Theorem:''' Suppose <math style="vertical-align: -5px">f(x)</math>  is a function that satisfies the following: |
|- | |- | ||
| | | | ||
| − | ::<math style="vertical-align: -5px">f(x)</math> is continuous on the closed interval <math style="vertical-align: -5px">[a,b].</math> | + | ::<math style="vertical-align: -5px">f(x)</math>  is continuous on the closed interval  <math style="vertical-align: -5px">[a,b].</math> |
|- | |- | ||
| | | | ||
| − | ::<math style="vertical-align: -5px">f(x)</math> is differentiable on the open interval <math style="vertical-align: -5px">(a,b).</math> | + | ::<math style="vertical-align: -5px">f(x)</math>  is differentiable on the open interval <math style="vertical-align: -5px">(a,b).</math> |
|- | |- | ||
| | | | ||
| − | ::Then, there is a number <math style="vertical-align: | + | ::Then, there is a number <math style="vertical-align: 0px">c</math> such that  <math style="vertical-align: 0px">a<c<b</math>  and <math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}.</math> |
|} | |} | ||
Revision as of 10:54, 4 March 2016
Consider the following function:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=3x-2\sin x+7}
a) Use the Intermediate Value Theorem to show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at least one zero.
b) Use the Mean Value Theorem to show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at most one zero.
| Foundations: |
|---|
| Recall: |
| 1. Intermediate Value Theorem: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is continuous on a closed interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} is any number |
|
| 2. Mean Value Theorem: Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is a function that satisfies the following: |
|
|
|
Solution:
(a)
| Step 1: |
|---|
| First note that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)=7.} |
| Also, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).} |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1\leq \sin(x) \leq 1,} |
|
| Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -10\leq f(-5) \leq -6} and hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)<0.} |
| Step 2: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)<0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)>0,} there exists Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5<x<0} such that |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=0} by the Intermediate Value Theorem. Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at least one zero. |
(b)
| Step 1: |
|---|
| Suppose that has more than one zero. So, there exists Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a,b} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a)=f(b)=0.} |
| Then, by the Mean Value Theorem, there exists Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<c<b} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=0.} |
| Step 2: |
|---|
| We have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3-2\cos(x).} Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1\leq \cos(x)\leq 1,} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 \leq -2\cos(x)\leq 2.} So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\leq f'(x) \leq 5,} |
| which contradicts Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=0.} Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at most one zero. |
| Final Answer: |
|---|
| (a) Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)<0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)>0,} there exists Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5<x<0} such that |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=0} by the Intermediate Value Theorem. Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at least one zero. |
| (b) See Step 1 and Step 2 above. |