Difference between revisions of "009A Sample Final 1, Problem 3"
Jump to navigation
Jump to search
(→2) |
(→3) |
||
| Line 79: | Line 79: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |We need to calculate <math>\frac{d}{dx}\sqrt{1+x^3}.</math> | + | |We need to calculate  <math>\frac{d}{dx}\sqrt{1+x^3}.</math> |
|- | |- | ||
|We use the Chain Rule again to get | |We use the Chain Rule again to get | ||
Revision as of 10:35, 4 March 2016
Find the derivatives of the following functions.
a)
b)
1
| Foundations: |
|---|
| For functions and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)} , recall |
| Chain Rule: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)} |
| Quotient Rule: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}} |
| Trig Derivatives: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\tan x)=\sec^2 x} |
Solution:
2
(a)
| Step 1: |
|---|
| Using the Chain Rule, we have |
|
| Step 2: |
|---|
| Now, we need to calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg).} |
| To do this, we use the Quotient Rule. So, we have |
|
3
(b)
| Step 1: |
|---|
| Again, we need to use the Chain Rule. We have |
|
| Step 2: |
|---|
| We need to calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\sqrt{1+x^3}.} |
| We use the Chain Rule again to get |
|
4
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{4x}{x^4-1}} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}} |