Difference between revisions of "009A Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x)</math>, we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x</math>.
+
|'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math>
 
|-
 
|-
 
|
 
|
 
::Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined.  
 
::Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined.  
 
|-
 
|-
|'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b]</math>,
+
|'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math>
 
|-
 
|-
 
|
 
|
::we need to compare the <math style="vertical-align: -5px">y</math> values of our critical points with <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b)</math>.
+
::we need to compare the <math style="vertical-align: -5px">y</math> values of our critical points with <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b).</math>
 
|}
 
|}
  
Line 31: Line 31:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|To find the critical points, first we need to find <math style="vertical-align: -5px">f'(x)</math>.
+
|To find the critical points, first we need to find <math style="vertical-align: -5px">f'(x).</math>
 
|-
 
|-
 
|Using the Product Rule, we have
 
|Using the Product Rule, we have
Line 39: Line 39:
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x-8}{3x^{\frac{2}{3}}}+x^{\frac{1}{3}}}\\
+
& = & \displaystyle{\frac{x-8}{3x^{\frac{2}{3}}}+x^{\frac{1}{3}}.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 46: Line 46:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Notice <math style="vertical-align: -5px">f'(x)</math> is undefined when <math style="vertical-align: -1px">x=0</math>.
+
|Notice <math style="vertical-align: -5px">f'(x)</math> is undefined when <math style="vertical-align: -1px">x=0.</math>
 
|-
 
|-
|Now, we need to set <math style="vertical-align: -5px">f'(x)=0</math>.
+
|Now, we need to set <math style="vertical-align: -5px">f'(x)=0.</math>
 
|-
 
|-
 
|So, we get  
 
|So, we get  
 
|-
 
|-
 
|
 
|
::<math>-x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}</math>.
+
::<math>-x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}.</math>
 
|-
 
|-
|We cross multiply to get <math style="vertical-align: 1px">-3x=x-8</math>.
+
|We cross multiply to get <math style="vertical-align: 1px">-3x=x-8.</math>
 
|-
 
|-
|Solving, we get <math style="vertical-align: -1px">x=2</math>.
+
|Solving, we get <math style="vertical-align: -1px">x=2.</math>
 
|-
 
|-
|Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math>.
+
|Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6)).</math>
 
|}
 
|}
  
Line 69: Line 69:
 
|We need to compare the values of <math style="vertical-align: -5px">f(x)</math> at the critical points and at the endpoints of the interval.  
 
|We need to compare the values of <math style="vertical-align: -5px">f(x)</math> at the critical points and at the endpoints of the interval.  
 
|-
 
|-
|Using the equation given, we have <math style="vertical-align: -5px">f(-8)=32</math> and <math style="vertical-align: -5px">f(8)=0</math>.
+
|Using the equation given, we have <math style="vertical-align: -5px">f(-8)=32</math> and <math style="vertical-align: -5px">f(8)=0.</math>
 
|}
 
|}
  
Line 77: Line 77:
 
|Comparing the values in Step 1 with the critical points in '''(a)''', the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">32</math>  
 
|Comparing the values in Step 1 with the critical points in '''(a)''', the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">32</math>  
 
|-
 
|-
|and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6)</math>.
+
|and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math>
 
|}
 
|}
  
Line 85: Line 85:
 
|'''(a)''' <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math>
 
|'''(a)''' <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math>
 
|-
 
|-
|'''(b)''' The absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6)</math>.
+
|'''(b)''' The absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:13, 1 March 2016

Consider the following continuous function:

defined on the closed, bounded interval .

a) Find all the critical points for .

b) Determine the absolute maximum and absolute minimum values for on the interval .

Foundations:  
Recall:
1. To find the critical points for we set and solve for
Also, we include the values of where is undefined.
2. To find the absolute maximum and minimum of on an interval
we need to compare the values of our critical points with and

Solution:

(a)

Step 1:  
To find the critical points, first we need to find
Using the Product Rule, we have
Step 2:  
Notice is undefined when
Now, we need to set
So, we get
We cross multiply to get
Solving, we get
Thus, the critical points for are and

(b)

Step 1:  
We need to compare the values of at the critical points and at the endpoints of the interval.
Using the equation given, we have and
Step 2:  
Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for is
and the absolute minimum value for is
Final Answer:  
(a) and
(b) The absolute minimum value for is

Return to Sample Exam