Difference between revisions of "009A Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' What is the implicit differentiation of <math style="vertical-align: -4px">xy</math>?
+
|'''1.''' What is the implicit differentiation of <math style="vertical-align: -4px">xy?</math>
 
|-
 
|-
 
|
 
|
Line 23: Line 23:
 
|-
 
|-
 
|
 
|
::The slope is <math style="vertical-align: -13px">m=\frac{dy}{dx}</math>.
+
::The slope is <math style="vertical-align: -13px">m=\frac{dy}{dx}.</math>
 
|}
 
|}
  
Line 33: Line 33:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Using implicit differentiation on the equation <math style="vertical-align: -4px">x^3+y^3=6xy</math>, we get
+
|Using implicit differentiation on the equation <math style="vertical-align: -4px">x^3+y^3=6xy,</math> we get
 
|-
 
|-
 
|
 
|
::<math>3x^2+3y^2\frac{dy}{dx}=6y+6x\frac{dy}{dx}</math>.
+
::<math>3x^2+3y^2\frac{dy}{dx}=6y+6x\frac{dy}{dx}.</math>
 
|}
 
|}
  

Revision as of 11:28, 1 March 2016

A curve is defined implicitly by the equation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3+y^3=6xy}

a) Using implicit differentiation, compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}} .

b) Find an equation of the tangent line to the curve at the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3,3)} .

Foundations:  
1. What is the implicit differentiation of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xy?}
It would be Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y+x\frac{dy}{dx}} by the Product Rule.
2. What two pieces of information do you need to write the equation of a line?
You need the slope of the line and a point on the line.
3. What is the slope of the tangent line of a curve?
The slope is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=\frac{dy}{dx}.}

Solution:

(a)

Step 1:  
Using implicit differentiation on the equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3+y^3=6xy,} we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x^2+3y^2\frac{dy}{dx}=6y+6x\frac{dy}{dx}.}
Step 2:  
Now, we move all the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}} terms to one side of the equation.
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x^2-6y=\frac{dy}{dx}(6x-3y^2)} .
We solve to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}} .

(b)

Step 1:  
First, we find the slope of the tangent line at the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3,3)} .
We plug in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3,3)} into the formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}} we found in part (a).
So, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=\frac{3(3)^2-6(3)}{6(3)-3(3)^2}=\frac{9}{-9}=-1} .
Step 2:  
Now, we have the slope of the tangent line at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3,3)} and a point.
Thus, we can write the equation of the line.
So, the equation of the tangent line at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3,3)} is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-1(x-3)+3} .
Final Answer:  
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-1(x-3)+3}

Return to Sample Exam