Difference between revisions of "009A Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
|-
 
|-
 
|
 
|
::For functions <math style="vertical-align: -12px">f(x),g(x),~\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
+
::For functions <math style="vertical-align: -12px">f(x),g(x),~\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x).</math>
 
|}
 
|}
  
Line 24: Line 24:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we compute <math>\frac{dy}{dx}</math>. We get
+
|First, we compute <math>\frac{dy}{dx}.</math> We get
 
|-
 
|-
 
|
 
|
::<math>\frac{dy}{dx}=2x-\sin(\pi(x^2+1))(2\pi x)</math>.
+
::<math>\frac{dy}{dx}=2x-\sin(\pi(x^2+1))(2\pi x).</math>
 
|}
 
|}
  
Line 38: Line 38:
 
|-
 
|-
 
|
 
|
::<math>m=2(1)-\sin(2\pi)2\pi=2</math>.
+
::<math>m=2(1)-\sin(2\pi)2\pi=2.</math>
 
|-
 
|-
 
|To get a point on the line, we plug in <math style="vertical-align: -3px">x_0=1</math> into the equation given.  
 
|To get a point on the line, we plug in <math style="vertical-align: -3px">x_0=1</math> into the equation given.  
 
|-
 
|-
|So, we have <math style="vertical-align: -5px">y=1^2+\cos(2\pi)=2</math>.
+
|So, we have <math style="vertical-align: -5px">y=1^2+\cos(2\pi)=2.</math>
 
|-
 
|-
|Thus, the equation of the tangent line is <math style="vertical-align: -5px">y=2(x-1)+2</math>.
+
|Thus, the equation of the tangent line is <math style="vertical-align: -5px">y=2(x-1)+2.</math>
 
|}
 
|}
  

Revision as of 12:30, 29 February 2016

If

compute and find the equation for the tangent line at . You may leave your answers in point-slope form.

Foundations:  
1. What two pieces of information do you need to write the equation of a line?
You need the slope of the line and a point on the line.
2. What does the Chain Rule state?
For functions

Solution:

Step 1:  
First, we compute We get
Step 2:  
To find the equation of the tangent line, we first find the slope of the line.
Using in the formula for from Step 1, we get
To get a point on the line, we plug in into the equation given.
So, we have
Thus, the equation of the tangent line is
Final Answer:  

Return to Sample Exam