Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 17: Line 17:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: -1px">x=a</math> if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a)</math>
+
|'''1.''' <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: -1px">x=a</math> if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
 
|-
 
|-
|'''2.''' The definition of derivative for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}</math>.
+
|'''2.''' The definition of derivative for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}.</math>
 
|}
 
|}
  
Line 29: Line 29:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We first calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)</math>. We have
+
|We first calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x).</math> We have
 
|-
 
|-
 
|
 
|
Line 37: Line 37:
 
& = & \displaystyle{4\sqrt{3+1}}\\
 
& = & \displaystyle{4\sqrt{3+1}}\\
 
&&\\
 
&&\\
& = & \displaystyle{8}
+
& = & \displaystyle{8.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 44: Line 44:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^-}f(x)</math>. We have
+
|Now, we calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^-}f(x).</math> We have
 
|-
 
|-
 
|
 
|
Line 52: Line 52:
 
& = & \displaystyle{3+5}\\
 
& = & \displaystyle{3+5}\\
 
&&\\
 
&&\\
& = & \displaystyle{8}
+
& = & \displaystyle{8.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 59: Line 59:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Now, we calculate <math style="vertical-align: -3px">f(3)</math>. We have
+
|Now, we calculate <math style="vertical-align: -3px">f(3).</math> We have
 
|-
 
|-
 
|
 
|
::<math>f(3)=4\sqrt{3+1}=8</math>.
+
::<math>f(3)=4\sqrt{3+1}=8.</math>
 
|-
 
|-
 
|Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous.
 
|Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous.
Line 82: Line 82:
 
& = & \displaystyle{\lim_{h\rightarrow 0^-}1}\\
 
& = & \displaystyle{\lim_{h\rightarrow 0^-}1}\\
 
&&\\
 
&&\\
& = & \displaystyle{1}
+
& = & \displaystyle{1.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 107: Line 107:
 
& = & \displaystyle{\frac{4}{2\sqrt{4}}}\\
 
& = & \displaystyle{\frac{4}{2\sqrt{4}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{1}\\
+
& = & \displaystyle{1.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 114: Line 114:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>,
+
|Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math>  
 
|-
 
|-
|<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3</math>.
+
|<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3.</math>
 
|}
 
|}
  
Line 124: Line 124:
 
|'''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous.
 
|'''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous.
 
|-
 
|-
|'''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>,
+
|'''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math>  
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3</math>.
+
::<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3.</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:27, 29 February 2016

Consider the following piecewise defined function:

a) Show that is continuous at .

b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .

Foundations:  
Recall:
1. is continuous at if
2. The definition of derivative for is

Solution:

(a)

Step 1:  
We first calculate We have
Step 2:  
Now, we calculate We have
Step 3:  
Now, we calculate We have
Since is continuous.

(b)

Step 1:  
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have
Step 2:  
Now, we have
Step 3:  
Since
is differentiable at
Final Answer:  
(a) Since is continuous.
(b) Since
is differentiable at

Return to Sample Exam