Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1</math>,
+
|'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1,</math>  
 
|-
 
|-
 
|
 
|
::<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}</math>.
+
::<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}.</math>
 
|-
 
|-
 
|'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math>
 
|'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math>
 
|-
 
|-
 
|
 
|
::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k</math>.
+
::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math>
 
|}
 
|}
  

Revision as of 10:48, 29 February 2016

Find the sum of the following series:

a)

b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)}

Foundations:  
Recall:
1. For a geometric series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} ar^n} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|<1,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}.}
2. For a telescoping series, we find the sum by first looking at the partial sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k}
and then calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k\rightarrow\infty} s_k.}

Solution:

(a)

Step 1:  
First, we write
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\ &&\\ & = & \displaystyle{\sum_{n=0}^{\infty} \bigg(\frac{-2}{e}\bigg)^n.}\\ \end{array}}
Step 2:  
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2<e,~\bigg|-\frac{2}{e}\bigg|<1} . So,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}.}

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).}
Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.}
Step 2:  
Thus,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}.}


Final Answer:  
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{e}{e+2}}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}

Return to Sample Exam