Difference between revisions of "009C Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|'''L'Hopital's Rule'''  
 
|'''L'Hopital's Rule'''  
 
|-
 
|-
|Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty</math>.
+
|Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
::If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -1px">\pm \infty</math>,
+
::If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -1px">\pm \infty ,</math>
 
|-
 
|-
 
|
 
|
::then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>.
+
::then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
  

Revision as of 10:48, 29 February 2016

Compute

a)

b)

Foundations:  
Recall:
L'Hopital's Rule
Suppose that and are both zero or both Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty .}
If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}} is finite or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty ,}
then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.}

Solution:

(a)

Step 1:  
First, we switch to the limit to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} so that we can use L'Hopital's rule.
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\ &&\\ & \overset{l'H}{=} & \displaystyle{\frac{-4}{10}}\\ &&\\ & = & \displaystyle{\frac{-2}{5}}. \end{array}}
Step 2:  
Hence, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}=\frac{-2}{5}.}

(b)

Step 1:  
Again, we switch to the limit to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} so that we can use L'Hopital's rule.
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\frac{1}{x}}{\frac{3}{3x}}}\\ &&\\ & = & \displaystyle{\lim_{x \rightarrow \infty} 1}\\ &&\\ & = & 1. \end{array}}
Step 2:  
Hence, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1.}
Final Answer:  
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-2}{5}}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}

Return to Sample Exam