Difference between revisions of "009C Sample Final 1, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 11: | Line 11: | ||
|- | |- | ||
| | | | ||
| − | ::<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta</math> | + | ::<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta.</math> |
|- | |- | ||
| − | |'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sqrt{1+x^2}~dx</math> | + | |'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sqrt{1+x^2}~dx?</math> |
|- | |- | ||
| | | | ||
| − | ::You could use trig substitution and let <math style="vertical-align: -1px">x=\tan \theta </math> | + | ::You could use trig substitution and let <math style="vertical-align: -1px">x=\tan \theta .</math> |
|- | |- | ||
| − | |'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C</math> | + | |'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C.</math> |
|} | |} | ||
| Line 26: | Line 26: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |First, we need to calculate <math style="vertical-align: -14px">\frac{dr}{d\theta}</math>. Since <math style="vertical-align: -14px">r=\theta,~\frac{dr}{d\theta}=1</math> | + | |First, we need to calculate <math style="vertical-align: -14px">\frac{dr}{d\theta}</math>. Since <math style="vertical-align: -14px">r=\theta,~\frac{dr}{d\theta}=1.</math> |
|- | |- | ||
|Using the formula in Foundations, we have | |Using the formula in Foundations, we have | ||
|- | |- | ||
| | | | ||
| − | ::<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta</math> | + | ::<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta.</math> |
|} | |} | ||
| Line 37: | Line 37: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we proceed using trig substitution. Let <math style="vertical-align: -2px">\theta=\tan x</math> | + | |Now, we proceed using trig substitution. Let <math style="vertical-align: -2px">\theta=\tan x.</math> Then, <math style="vertical-align: -1px">d\theta=\sec^2xdx.</math> |
|- | |- | ||
|So, the integral becomes | |So, the integral becomes | ||
| Line 47: | Line 47: | ||
& = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sec^3xdx}\\ | & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sec^3xdx}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}}\\ | + | & = & \displaystyle{\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 54: | Line 54: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |Since <math style="vertical-align: -1px">\theta=\tan x</math> | + | |Since <math style="vertical-align: -1px">\theta=\tan x,</math> we have <math style="vertical-align: -1px">x=\tan^{-1}\theta .</math> |
|- | |- | ||
|So, we have | |So, we have | ||
| Line 62: | Line 62: | ||
\displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\ | \displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|}\\ | + | & = & \displaystyle{\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|.}\\ |
\end{array}</math> | \end{array}</math> | ||
| − | |||
| − | |||
|} | |} | ||
Revision as of 11:44, 29 February 2016
A curve is given in polar coordinates by
Find the length of the curve.
| Foundations: |
|---|
| 1. The formula for the arc length of a polar curve with is |
|
|
| 2. How would you integrate |
|
| 3. Recall that |
Solution:
| Step 1: |
|---|
| First, we need to calculate . Since |
| Using the formula in Foundations, we have |
|
|
| Step 2: |
|---|
| Now, we proceed using trig substitution. Let Then, |
| So, the integral becomes |
|
|
| Step 3: |
|---|
| Since we have |
| So, we have |
|
|
| Final Answer: |
|---|