Difference between revisions of "009C Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
::<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta</math>.
+
::<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta.</math>
 
|-
 
|-
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sqrt{1+x^2}~dx</math> ?
+
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sqrt{1+x^2}~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use trig substitution and let <math style="vertical-align: -1px">x=\tan \theta </math>.
+
::You could use trig substitution and let <math style="vertical-align: -1px">x=\tan \theta .</math>
 
|-
 
|-
|'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C</math>.
+
|'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C.</math>
 
|}
 
|}
  
Line 26: Line 26:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we need to calculate <math style="vertical-align: -14px">\frac{dr}{d\theta}</math>. Since <math style="vertical-align: -14px">r=\theta,~\frac{dr}{d\theta}=1</math>.
+
|First, we need to calculate <math style="vertical-align: -14px">\frac{dr}{d\theta}</math>. Since <math style="vertical-align: -14px">r=\theta,~\frac{dr}{d\theta}=1.</math>
 
|-
 
|-
 
|Using the formula in Foundations, we have  
 
|Using the formula in Foundations, we have  
 
|-
 
|-
 
|
 
|
::<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta</math>.
+
::<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta.</math>
 
|}
 
|}
  
Line 37: Line 37:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we proceed using trig substitution. Let <math style="vertical-align: -2px">\theta=\tan x</math>. Then, <math style="vertical-align: -1px">d\theta=\sec^2xdx</math>.
+
|Now, we proceed using trig substitution. Let <math style="vertical-align: -2px">\theta=\tan x.</math> Then, <math style="vertical-align: -1px">d\theta=\sec^2xdx.</math>
 
|-
 
|-
 
|So, the integral becomes  
 
|So, the integral becomes  
Line 47: Line 47:
 
& = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sec^3xdx}\\
 
& = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sec^3xdx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}}\\
+
& = & \displaystyle{\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 54: Line 54:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Since <math style="vertical-align: -1px">\theta=\tan x</math>, we have <math style="vertical-align: -1px">x=\tan^{-1}\theta</math>.
+
|Since <math style="vertical-align: -1px">\theta=\tan x,</math> we have <math style="vertical-align: -1px">x=\tan^{-1}\theta .</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 62: Line 62:
 
\displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\
 
\displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|}\\
+
& = & \displaystyle{\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|.}\\
 
\end{array}</math>
 
\end{array}</math>
|-
 
|
 
 
|}
 
|}
  

Revision as of 10:44, 29 February 2016

A curve is given in polar coordinates by

Find the length of the curve.

Foundations:  
1. The formula for the arc length Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} of a polar curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=f(\theta)} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_1\leq \theta \leq \alpha_2} is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta.}
2. How would you integrate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \sqrt{1+x^2}~dx?}
You could use trig substitution and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\tan \theta .}
3. Recall that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C.}

Solution:

Step 1:  
First, we need to calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dr}{d\theta}} . Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\theta,~\frac{dr}{d\theta}=1.}
Using the formula in Foundations, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta.}
Step 2:  
Now, we proceed using trig substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\tan x.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\theta=\sec^2xdx.}
So, the integral becomes
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{L} & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx}\\ &&\\ & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sec^3xdx}\\ &&\\ & = & \displaystyle{\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}.}\\ \end{array}}
Step 3:  
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\tan x,} we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\tan^{-1}\theta .}
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\ &&\\ & = & \displaystyle{\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|.}\\ \end{array}}
Final Answer:  
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|}

Return to Sample Exam