Difference between revisions of "009C Sample Final 1, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 14: | Line 14: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math> for appropriate values of <math>\alpha_1,\alpha_2</math> | + | ::<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math> for appropriate values of <math>\alpha_1,\alpha_2.</math> |
|} | |} | ||
Line 36: | Line 36: | ||
|- | |- | ||
| | | | ||
− | ::<math>2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2)~d\theta</math> | + | ::<math>2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2)~d\theta.</math> |
− | |||
− | |||
|} | |} | ||
Line 44: | Line 42: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Using the double angle formula for <math style="vertical-align: -5px">\sin(2\theta)</math> | + | |Using the double angle formula for <math style="vertical-align: -5px">\sin(2\theta),</math> we have |
|- | |- | ||
| | | | ||
Line 54: | Line 52: | ||
& = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{3}{2}+2\sin(2\theta)-\frac{\cos(4\theta)}{2}~d\theta}\\ | & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{3}{2}+2\sin(2\theta)-\frac{\cos(4\theta)}{2}~d\theta}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}}\\ | + | & = & \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 69: | Line 67: | ||
& = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\ | & = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{3\pi}{2}}\\ | + | & = & \displaystyle{\frac{3\pi}{2}.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} |
Revision as of 11:42, 29 February 2016
A curve is given in polar coordinates by
a) Sketch the curve.
b) Find the area enclosed by the curve.
Foundations: |
---|
The area under a polar curve is given by |
|
Solution:
(a)
Step 1: |
---|
Insert sketch |
(b)
Step 1: |
---|
Since the graph has symmetry (as seen in the graph), the area of the curve is |
|
Step 2: |
---|
Using the double angle formula for we have |
|
Step 3: |
---|
Lastly, we evaluate to get |
|
Final Answer: |
---|
(a) See Step 1 above. |
(b) |