Difference between revisions of "009C Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 17: Line 17:
 
|-
 
|-
 
|
 
|
::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>.
+
::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
|}
 
|}
  
Line 39: Line 39:
 
|-
 
|-
 
|
 
|
::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>.
+
::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
|-
 
|-
|Since <math style="vertical-align: -2px">r=1+\sin\theta</math>,
+
|Since <math style="vertical-align: -2px">r=1+\sin\theta,</math>
 
|-
 
|-
 
|
 
|
::<math>\frac{dr}{d\theta}=\cos\theta</math>.
+
::<math>\frac{dr}{d\theta}=\cos\theta.</math>
 
|-
 
|-
|Hence, <math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}</math>
+
|Hence, <math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}.</math>
 
|}
 
|}
  
Line 56: Line 56:
 
\displaystyle{y'} & = & \displaystyle{\frac{2\cos\theta\sin\theta+\cos\theta}{\cos^2\theta-\sin^2\theta-\sin\theta}}\\
 
\displaystyle{y'} & = & \displaystyle{\frac{2\cos\theta\sin\theta+\cos\theta}{\cos^2\theta-\sin^2\theta-\sin\theta}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}}\\
+
& = & \displaystyle{\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 65: Line 65:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>.
+
|We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
|-
 
|-
|So, first we need to find <math>\frac{dy'}{d\theta}</math>.
+
|So, first we need to find <math>\frac{dy'}{d\theta}.</math>
 
|-
 
|-
 
|We have
 
|We have
Line 82: Line 82:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2</math>.
+
|since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2.</math>
 
|}
 
|}
  
Line 88: Line 88:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
| Now, using the resulting formula for <math>\frac{dy'}{d\theta}</math>, we get  
+
| Now, using the resulting formula for <math>\frac{dy'}{d\theta},</math> we get  
 
|-
 
|-
 
|
 
|
::<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>.
+
::<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.</math>
 
|-
 
|-
 
|
 
|

Revision as of 11:41, 29 February 2016

A curve is given in polar coordinates by

a) Sketch the curve.

b) Compute .

c) Compute .

Foundations:  
How do you calculate for a polar curve ?
Since , we have

Solution:

(a)

Step 1:  
Insert sketch of graph


(b)

Step 1:  
First, recall we have
Since
Hence,
Step 2:  
Thus, we have

(c)

Step 1:  
We have
So, first we need to find
We have
since and
Step 2:  
Now, using the resulting formula for we get
Final Answer:  
(a) See Step 1 above for the graph.
(b)
(c)

Return to Sample Exam