Difference between revisions of "009C Sample Final 1, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 41: | Line 41: | ||
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\bigg(\frac{n}{n+1}\bigg)^n\bigg|}\\ | & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\bigg(\frac{n}{n+1}\bigg)^n\bigg|}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\ | + | & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 58: | Line 58: | ||
& = & \displaystyle{\lim_{n \rightarrow \infty}e^{n\ln(\frac{n}{n+1})}}\\ | & = & \displaystyle{\lim_{n \rightarrow \infty}e^{n\ln(\frac{n}{n+1})}}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{e^{\lim_{n \rightarrow \infty}n\ln(\frac{n}{n+1})}}\\ | + | & = & \displaystyle{e^{\lim_{n \rightarrow \infty}n\ln(\frac{n}{n+1})}.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 65: | Line 65: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |Now, we need to calculate <math>\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)</math> | + | |Now, we need to calculate <math>\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).</math> |
|- | |- | ||
| − | |First, we write the limit as <math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}</math> | + | |First, we write the limit as <math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math> |
|- | |- | ||
|Now, we use L'Hopital's Rule to get | |Now, we use L'Hopital's Rule to get | ||
| Line 79: | Line 79: | ||
& = & \displaystyle{\lim_{n \rightarrow \infty} \frac{-n}{n+1}}\\ | & = & \displaystyle{\lim_{n \rightarrow \infty} \frac{-n}{n+1}}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{-1}\\ | + | & = & \displaystyle{-1.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 91: | Line 91: | ||
|- | |- | ||
| | | | ||
| − | ::<math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1</math> | + | ::<math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.</math> |
|- | |- | ||
|Thus, the series absolutely converges by the Ratio Test. | |Thus, the series absolutely converges by the Ratio Test. | ||
Revision as of 10:32, 29 February 2016
Determine whether the following series converges or diverges.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}}
| Foundations: |
|---|
| Recall: |
| 1. Ratio Test Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum a_n} be a series and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle L=\lim _{n\rightarrow \infty }{\bigg |}{\frac {a_{n+1}}{a_{n}}}{\bigg |}} . Then, |
|
|
|
| 2. If a series absolutely converges, then it also converges. |
Solution:
| Step 1: |
|---|
| We proceed using the ratio test. |
| We have |
|
| Step 2: |
|---|
| Now, we continue to calculate the limit from Step 1. We have |
|
| Step 3: |
|---|
| Now, we need to calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).} |
| First, we write the limit as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.} |
| Now, we use L'Hopital's Rule to get |
|
| Step 4: |
|---|
| We go back to Step 2 and use the limit we calculated in Step 3. |
| So, we have |
|
| Thus, the series absolutely converges by the Ratio Test. |
| Since the series absolutely converges, the series also converges. |
| Final Answer: |
|---|
| The series converges. |