Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 54: Line 54:
 
|This is a telescoping series. First, we find the partial sum of this series.
 
|This is a telescoping series. First, we find the partial sum of this series.
 
|-
 
|-
|Let <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>.
+
|Let <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
 
|-
 
|-
|Then, <math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}</math>.
+
|Then, <math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.</math>
 
|}
 
|}
  
Line 65: Line 65:
 
|-
 
|-
 
|
 
|
::<math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}</math>
+
::<math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}.</math>
 
|}
 
|}
  

Revision as of 11:30, 29 February 2016

Find the sum of the following series:

a)

b)

Foundations:  
Recall:
1. For a geometric series with ,
.
2. For a telescoping series, we find the sum by first looking at the partial sum
and then calculate .

Solution:

(a)

Step 1:  
First, we write
Step 2:  
Since . So,

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let
Then,
Step 2:  
Thus,


Final Answer:  
(a)
(b)

Return to Sample Exam