Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 34: Line 34:
 
\displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\
 
\displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\sum_{n=0}^{\infty} \bigg(\frac{-2}{e}\bigg)^n}\\
+
& = & \displaystyle{\sum_{n=0}^{\infty} \bigg(\frac{-2}{e}\bigg)^n.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 44: Line 44:
 
|-
 
|-
 
|
 
|
::<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}</math>.
+
::<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}.</math>
 
|}
 
|}
  

Revision as of 11:30, 29 February 2016

Find the sum of the following series:

a)

b)

Foundations:  
Recall:
1. For a geometric series with ,
.
2. For a telescoping series, we find the sum by first looking at the partial sum
and then calculate .

Solution:

(a)

Step 1:  
First, we write
Step 2:  
Since . So,

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let .
Then, .
Step 2:  
Thus,


Final Answer:  
(a)
(b)

Return to Sample Exam