Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 107: Line 107:
 
|Since the integral is a definite integral, we need to change the bounds of integration.  
 
|Since the integral is a definite integral, we need to change the bounds of integration.  
 
|-
 
|-
|Plugging in our values into the equation <math style="vertical-align: -1px">u=4-x</math>, we get <math style="vertical-align: -5px">u_1=4-1=3</math> and <math style="vertical-align: -3px">u_2=4-a</math>.
+
|Plugging in our values into the equation <math style="vertical-align: -1px">u=4-x</math>, we get <math style="vertical-align: -5px">u_1=4-1=3</math>&thinsp; and <math style="vertical-align: -3px">u_2=4-a</math>.
 
|-
 
|-
 
|Thus, the integral becomes
 
|Thus, the integral becomes
 
|-
 
|-
 
|
 
|
::<math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-1}{\sqrt{u}}~du</math>.
+
::<math>\int_1^4 \frac{dx}{\sqrt{4-x}}\,=\,\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-1}{\sqrt{u}}~du.</math>
 
|}
 
|}
  
Line 126: Line 126:
 
& = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\
 
& = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\
 
&&\\
 
&&\\
& = & \displaystyle{2\sqrt{3}}\\
+
& = & \displaystyle{2\sqrt{3}}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
 
== 4 ==
 
== 4 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 23:09, 25 February 2016

Evaluate the improper integrals:

a)
b)
Foundations:  
1. How could you write so that you can integrate?
You can write
2. How could you write  ?
The problem is that   is not continuous at .
So, you can write .
3. How would you integrate  ?
You can use integration by parts.
Let and .

Solution:

(a)

Step 1:  
First, we write .
Now, we proceed using integration by parts. Let and . Then, and .
Thus, the integral becomes
Step 2:  
For the remaining integral, we need to use -substitution. Let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
Step 3:  
Now, we evaluate to get
Using L'Hôpital's Rule, we get

3

(b)

Step 1:  
First, we write .
Now, we proceed by -substitution. We let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get   and .
Thus, the integral becomes
Step 2:  
We integrate to get

4

Final Answer:  
(a)
(b)

Return to Sample Exam