Difference between revisions of "009B Sample Final 1, Problem 6"
Jump to navigation
Jump to search
(→2) |
|||
Line 44: | Line 44: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx</math> | + | ::<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}\,dx.</math> |
|} | |} | ||
Line 64: | Line 64: | ||
& = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-e^{u}\bigg|_0^{-a}}\\ | & = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-e^{u}\bigg|_0^{-a}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\ | + | & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}.\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 79: | Line 79: | ||
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1}\\ | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}\\ | + | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}.\\ |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |Using L' | + | |Using L'Hôpital's Rule, we get |
|- | |- | ||
| | | | ||
Line 90: | Line 90: | ||
& = & \displaystyle{0+1}\\ | & = & \displaystyle{0+1}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{1}\\ | + | & = & \displaystyle{1}.\\ |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
| | | | ||
|} | |} | ||
+ | |||
== 3 == | == 3 == | ||
'''(b)''' | '''(b)''' |
Revision as of 23:06, 25 February 2016
Evaluate the improper integrals:
- a)
- b)
Foundations: |
---|
1. How could you write so that you can integrate? |
|
2. How could you write ? |
|
|
3. How would you integrate ? |
|
|
Solution:
2
(a)
Step 1: |
---|
First, we write . |
Now, we proceed using integration by parts. Let and . Then, and . |
Thus, the integral becomes |
|
Step 2: |
---|
For the remaining integral, we need to use -substitution. Let . Then, . |
Since the integral is a definite integral, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Thus, the integral becomes |
|
Step 3: |
---|
Now, we evaluate to get |
|
Using L'Hôpital's Rule, we get |
|
3
(b)
Step 1: |
---|
First, we write . |
Now, we proceed by -substitution. We let . Then, . |
Since the integral is a definite integral, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Thus, the integral becomes |
|
Step 2: |
---|
We integrate to get |
|
4
Final Answer: |
---|
(a) |
(b) |