Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
::<span class="exam">b) <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math>
 
::<span class="exam">b) <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math>
  
== 1 ==
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  

Revision as of 22:03, 25 February 2016

Evaluate the improper integrals:

a)
b)
Foundations:  
1. How could you write so that you can integrate?
You can write
2. How could you write Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{-1}^{1}{\frac {1}{x}}~dx}  ?
The problem is that   is not continuous at .
So, you can write Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{-1}^{1}{\frac {1}{x}}~dx=\lim _{a\rightarrow 0^{-}}\int _{-1}^{a}{\frac {1}{x}}~dx+\lim _{a\rightarrow 0^{+}}\int _{a}^{1}{\frac {1}{x}}~dx} .
3. How would you integrate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int xe^{x}\,dx}  ?
You can use integration by parts.
Let and .

Solution:

2

(a)

Step 1:  
First, we write .
Now, we proceed using integration by parts. Let and . Then, and .
Thus, the integral becomes
Step 2:  
For the remaining integral, we need to use -substitution. Let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
Step 3:  
Now, we evaluate to get
Using L'Hopital's Rule, we get

3

(b)

Step 1:  
First, we write .
Now, we proceed by -substitution. We let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1=4-1=3} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_2=4-a} .
Thus, the integral becomes
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-1}{\sqrt{u}}~du} .
Step 2:  
We integrate to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^4 \frac{dx}{\sqrt{4-x}}} & = & \displaystyle{\lim_{a\rightarrow 4} -2u^{\frac{1}{2}}\bigg|_{3}^{4-a}}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\ &&\\ & = & \displaystyle{2\sqrt{3}}\\ \end{array}}

4

Final Answer:  
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{3}}

Return to Sample Exam