Difference between revisions of "009B Sample Final 1, Problem 7"
Jump to navigation
Jump to search
(→Temp3) |
(→Temp2) |
||
Line 35: | Line 35: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we calculate <math>\frac{dy}{dx}</math> | + | |First, we calculate  <math>\frac{dy}{dx}.</math> |
|- | |- | ||
|Since <math style="vertical-align: -12px">y=\ln (\cos x),~\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x</math>. | |Since <math style="vertical-align: -12px">y=\ln (\cos x),~\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x</math>. | ||
Line 42: | Line 42: | ||
|- | |- | ||
| | | | ||
− | ::<math>L=\int_0^ | + | ::<math>L=\int_0^{\pi/3} \sqrt{1+(-\tan x)^2}~dx</math>. |
|} | |} | ||
Line 52: | Line 52: | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | L & = & \displaystyle{\int_0^ | + | L & = & \displaystyle{\int_0^{\pi/3} \sqrt{1+\tan^2 x}~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\int_0^ | + | & = & \displaystyle{\int_0^{\pi/3} \sqrt{\sec^2x}~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\int_0^ | + | & = & \displaystyle{\int_0^{\pi/3} \sec x ~dx}.\\ |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
Line 75: | Line 75: | ||
& = & \displaystyle{\ln |2+\sqrt{3}|-\ln|1|}\\ | & = & \displaystyle{\ln |2+\sqrt{3}|-\ln|1|}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\ln (2+\sqrt{3})} | + | & = & \displaystyle{\ln (2+\sqrt{3})}. |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
| | | | ||
|} | |} | ||
+ | |||
== Temp3 == | == Temp3 == | ||
'''(b)''' | '''(b)''' |
Revision as of 22:37, 25 February 2016
a) Find the length of the curve
- .
b) The curve
is rotated about the -axis. Find the area of the resulting surface.
Foundations: |
---|
Recall: |
1. The formula for the length of a curve where is |
|
2. |
3. The surface area of a function rotated about the -axis is given by |
|
Solution:
Temp2
(a)
Step 1: |
---|
First, we calculate |
Since . |
Using the formula given in the Foundations section, we have |
|
Step 2: |
---|
Now, we have: |
|
Step 3: |
---|
Finally, |
|
Temp3
(b)
Step 1: |
---|
We start by calculating . |
Since . |
Using the formula given in the Foundations section, we have |
|
Step 2: |
---|
Now, we have |
We proceed by using trig substitution. Let . Then, . |
So, we have |
|
Step 3: |
---|
Now, we use -substitution. Let . Then, . |
So, the integral becomes |
|
Step 4: |
---|
We started with a definite integral. So, using Step 2 and 3, we have |
|
Temp4
Final Answer: |
---|
(a) |
(b) |