Difference between revisions of "009B Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
<span class="exam"> We would like to evaluate | <span class="exam"> We would like to evaluate | ||
+ | :::::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t\,dt\bigg).</math> | ||
− | + | <span class="exam">a) Compute <math style="vertical-align: -15px">f(x)=\int_{-1}^{x} \sin(t^2)2t\,dt</math>. | |
− | |||
− | <span class="exam">a) Compute <math style="vertical-align: -15px">f(x)=\int_{-1}^{x} \sin(t^2) | ||
<span class="exam">b) Find <math style="vertical-align: -5px">f'(x)</math>. | <span class="exam">b) Find <math style="vertical-align: -5px">f'(x)</math>. | ||
<span class="exam">c) State the Fundamental Theorem of Calculus. | <span class="exam">c) State the Fundamental Theorem of Calculus. | ||
+ | |||
+ | <span class="exam">d) Use the Fundamental Theorem of Calculus to compute  <math style="vertical-align: -15px">\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t\,dt\bigg)</math>  without first computing the integral. | ||
<span class="exam">d) Use the Fundamental Theorem of Calculus to compute  <math style="vertical-align: -15px">\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>  without first computing the integral. | <span class="exam">d) Use the Fundamental Theorem of Calculus to compute  <math style="vertical-align: -15px">\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>  without first computing the integral. | ||
Line 24: | Line 25: | ||
'''Solution:''' | '''Solution:''' | ||
− | + | == Tempa == | |
'''(a)''' | '''(a)''' | ||
Line 53: | Line 54: | ||
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
− | + | == Tempb == | |
'''(b)''' | '''(b)''' | ||
Line 67: | Line 68: | ||
|If we take the derivative, we get <math style="vertical-align: -5px">f'(x)=\sin(x^2)2x</math>. | |If we take the derivative, we get <math style="vertical-align: -5px">f'(x)=\sin(x^2)2x</math>. | ||
|} | |} | ||
− | + | == Tempc == | |
'''(c)''' | '''(c)''' | ||
Line 91: | Line 92: | ||
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. | ||
|} | |} | ||
− | + | == Tempd == | |
'''(d)''' | '''(d)''' | ||
Revision as of 12:39, 25 February 2016
We would like to evaluate
a) Compute .
b) Find .
c) State the Fundamental Theorem of Calculus.
d) Use the Fundamental Theorem of Calculus to compute without first computing the integral.
d) Use the Fundamental Theorem of Calculus to compute without first computing the integral.
Foundations: |
---|
How would you integrate ? |
|
|
Solution:
Tempa
(a)
Step 1: |
---|
We proceed using -substitution. Let . Then, . |
Since this is a definite integral, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Step 2: |
---|
So, we have |
|
Tempb
(b)
Step 1: |
---|
From part (a), we have . |
Step 2: |
---|
If we take the derivative, we get . |
Tempc
(c)
Step 1: |
---|
The Fundamental Theorem of Calculus has two parts. |
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on and . |
Step 2: |
---|
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
Tempd
(d)
Step 1: |
---|
By the Fundamental Theorem of Calculus, Part 1, |
|
Final Answer: |
---|
(a) |
(b) |
(c) The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on and . |
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(d) |