Difference between revisions of "009C Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 65: Line 65:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}} & = &\displaystyle{\frac{3}{2}\frac{3\pi}{4}-\cos\bigg(\frac{3\pi}{2}\bigg)-\frac{\sin(3\pi)}{8}-\bigg[\frac{3}{2}\bigg(-\frac{\pi}{4}\bigg)-\cos\bigg(-\frac{\pi}{2}\bigg)-\frac{\sin(-\pi)}{8}\bigg]}\\
+
\displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}} & = &\displaystyle{\frac{3}{2}\bigg(\frac{3\pi}{4}\bigg)-\cos\bigg(\frac{3\pi}{2}\bigg)-\frac{\sin(3\pi)}{8}-\bigg[\frac{3}{2}\bigg(-\frac{\pi}{4}\bigg)-\cos\bigg(-\frac{\pi}{2}\bigg)-\frac{\sin(-\pi)}{8}\bigg]}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\
 
& = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\

Revision as of 11:32, 24 February 2016

A curve is given in polar coordinates by

a) Sketch the curve.

b) Find the area enclosed by the curve.


Foundations:  
The area under a polar curve is given by
for appropriate values of .

Solution:

(a)

Step 1:  
Insert sketch


(b)

Step 1:  
Since the graph has symmetry (as seen in the graph), the area of the curve is
Step 2:  
Using the double angle formula for , we have
Step 3:  
Lastly, we evaluate to get
Final Answer:  
(a) See Step 1 above.
(b)

Return to Sample Exam