Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3} 4\sqrt{x+1}}\\
+
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} 4\sqrt{x+1}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{4\sqrt{3+1}}\\
 
& = & \displaystyle{4\sqrt{3+1}}\\
Line 44: Line 44:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3} x+5}\\
+
\displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^-} x+5}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{3+5}\\
 
& = & \displaystyle{3+5}\\
Line 72: Line 72:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{(3+h)+5-8}{h}}\\
+
\displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{(3+h)+5-8}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{h}{h}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{h}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}1}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^-}1}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{1}
 
& = & \displaystyle{1}
Line 89: Line 89:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4\sqrt{3+h+1}-8}{h}}\\
+
\displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4\sqrt{3+h+1}-8}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{4}{2\sqrt{4}}}\\
 
& = & \displaystyle{\frac{4}{2\sqrt{4}}}\\

Revision as of 10:19, 24 February 2016

Consider the following piecewise defined function:

a) Show that is continuous at .

b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .

Foundations:  

Solution:

(a)

Step 1:  
We first calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{+}}f(x)} . We have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 3^{+}}f(x)}&=&\displaystyle {\lim _{x\rightarrow 3^{+}}4{\sqrt {x+1}}}\\&&\\&=&\displaystyle {4{\sqrt {3+1}}}\\&&\\&=&\displaystyle {8}\end{array}}}
Step 2:  
Now, we calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{-}}f(x)} . We have
Step 3:  
Now, we calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(3)} . We have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(3)=4{\sqrt {3+1}}=8} .
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)} is continuous.

(b)

Step 1:  
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{(3+h)+5-8}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{h}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0^-}1}\\ &&\\ & = & \displaystyle{1} \end{array}}
Step 2:  
Now, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4\sqrt{3+h+1}-8}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\frac{4}{2\sqrt{4}}}\\ &&\\ & = & \displaystyle{1}\\ \end{array}}
Step 3:  
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} ,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3} .
Final Answer:  
(a) Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)} is continuous.
(b) Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} ,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3} .

Return to Sample Exam