Difference between revisions of "009B Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 13: | Line 13: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |How would you integrate <math>\int e^{x^2}2x~dx</math>? |
+ | |- | ||
+ | | | ||
+ | ::You could use <math style="vertical-align: -1px">u</math>-substitution. Let <math style="vertical-align: 0px">u=x^2</math>. Then, <math style="vertical-align: 0px">du=2xdx</math>. | ||
+ | |- | ||
+ | | | ||
+ | ::So, we get <math style="vertical-align: -14px">\int e^u~du=e^u+C=e^{x^2}+C</math>. | ||
|} | |} | ||
Revision as of 11:14, 24 February 2016
We would like to evaluate
- .
a) Compute .
b) Find .
c) State the fundamental theorem of calculus.
d) Use the fundamental theorem of calculus to compute without first computing the integral.
Foundations: |
---|
How would you integrate ? |
|
|
Solution:
(a)
Step 1: |
---|
We proceed using -substitution. Let . Then, . |
Since this is a definite integral, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Step 2: |
---|
So, we have |
|
(b)
Step 1: |
---|
From part (a), we have . |
Step 2: |
---|
If we take the derivative, we get . |
(c)
Step 1: |
---|
The Fundamental Theorem of Calculus has two parts. |
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on and . |
Step 2: |
---|
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(d)
Step 1: |
---|
By the Fundamental Theorem of Calculus, Part 1, |
|
Final Answer: |
---|
(a) |
(b) |
(c) The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on and . |
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(d) |