Difference between revisions of "009C Sample Final 1, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 11: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |The area under a polar curve <math style="vertical-align: -5px">r=f(\theta)</math> is given by |
| + | |- | ||
| + | | | ||
| + | ::<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math> for appropriate values of <math>\alpha_1,\alpha_2</math>. | ||
|} | |} | ||
Revision as of 14:51, 23 February 2016
A curve is given in polar coordinates by
a) Sketch the curve.
b) Find the area enclosed by the curve.
| Foundations: |
|---|
| The area under a polar curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=f(\theta)} is given by |
|
Solution:
(a)
| Step 1: |
|---|
| Insert sketch |
(b)
| Step 1: |
|---|
| Since the graph has symmetry (as seen in the graph), the area of the curve is |
|
| Step 2: |
|---|
| Using the double angle formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(2\theta)} , we have |
|
| Step 3: |
|---|
| Lastly, we evaluate to get |
|
| Final Answer: |
|---|
| (a) See Step 1 above. |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3\pi}{2}} |