Difference between revisions of "009A Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 21: Line 21:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|To find the critical point, first we need to find <math>f'(x)</math>.
+
|To find the critical point, first we need to find <math style="vertical-align: -5px">f'(x)</math>.
 
|-
 
|-
 
|Using the Product Rule, we have
 
|Using the Product Rule, we have
Line 36: Line 36:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Notice <math>f'(x)</math> is undefined when <math>x=0</math>.  
+
|Notice <math style="vertical-align: -5px">f'(x)</math> is undefined when <math style="vertical-align: -1px">x=0</math>.  
 
|-
 
|-
|Now, we need to set <math>f'(x)=0</math>.
+
|Now, we need to set <math style="vertical-align: -5px">f'(x)=0</math>.
 
|-
 
|-
|So, we get <math>-x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}</math>.
+
|So, we get  
 
|-
 
|-
|We cross multiply to get <math>-3x=x-8</math>.
+
|
 +
::<math>-x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}</math>.
 +
|-
 +
|We cross multiply to get <math style="vertical-align: 1px">-3x=x-8</math>.
 
|-
 
|-
|Solving, we get <math>x=2</math>.
+
|Solving, we get <math style="vertical-align: -1px">x=2</math>.
 
|-
 
|-
|Thus, the critical points for <math>f(x)</math> are <math>(0,0)</math> and <math>(2,2^{\frac{1}{3}}(-6))</math>.
+
|Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math>.
 
|}
 
|}
  
Line 54: Line 57:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We need to compare the values of <math>f(x)</math> at the critical points and at the endpoints of the interval.  
+
|We need to compare the values of <math style="vertical-align: -5px">f(x)</math> at the critical points and at the endpoints of the interval.  
 
|-
 
|-
|Using the equation given, we have <math>f(-8)=32</math> and <math>f(8)=0</math>.
+
|Using the equation given, we have <math style="vertical-align: -5px">f(-8)=32</math> and <math style="vertical-align: -5px">f(8)=0</math>.
 
|}
 
|}
  
Line 62: Line 65:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Comparing the values in Step 1 with the critical points in '''(a)''', the absolute maximum value for <math>f(x)</math> is 32  
+
|Comparing the values in Step 1 with the critical points in '''(a)''', the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">32</math>
 
|-
 
|-
|and the absolute minimum value for <math>f(x)</math> is <math>2^{\frac{1}{3}}(-6)</math>.
+
|and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6)</math>.
 
|}
 
|}
  
Line 70: Line 73:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math>(0,0)</math> and <math>(2,2^{\frac{1}{3}}(-6))</math>
+
|'''(a)''' <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math>
 
|-
 
|-
|'''(b)''' The absolute minimum value for <math>f(x)</math> is <math>2^{\frac{1}{3}}(-6)</math>
+
|'''(b)''' The absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6)</math>.
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:58, 22 February 2016

Consider the following continuous function:

defined on the closed, bounded interval .

a) Find all the critical points for .

b) Determine the absolute maximum and absolute minimum values for on the interval .

Foundations:  

Solution:

(a)

Step 1:  
To find the critical point, first we need to find .
Using the Product Rule, we have
Step 2:  
Notice is undefined when .
Now, we need to set .
So, we get
.
We cross multiply to get .
Solving, we get .
Thus, the critical points for are and .

(b)

Step 1:  
We need to compare the values of at the critical points and at the endpoints of the interval.
Using the equation given, we have and .
Step 2:  
Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for is
and the absolute minimum value for is .
Final Answer:  
(a) and
(b) The absolute minimum value for is .

Return to Sample Exam