Difference between revisions of "009A Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 2: Line 2:
 
::::::<math>f(x)=x^{1/3}(x-8)</math>
 
::::::<math>f(x)=x^{1/3}(x-8)</math>
  
<span class="exam">defined on the closed, bounded interval <math>[-8,8]</math>.
+
<span class="exam">defined on the closed, bounded interval <math style="vertical-align: -3px">[-8,8]</math>.
  
<span class="exam">a) Find all the critical points for <math>f(x)</math>.
+
<span class="exam">a) Find all the critical points for <math style="vertical-align: -5px">f(x)</math>.
  
<span class="exam">b) Determine the absolute maximum and absolute minimum values for <math>f(x)</math> on the interval <math>[-8,8]</math>.
+
<span class="exam">b) Determine the absolute maximum and absolute minimum values for <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -3px">[-8,8]</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 16:00, 22 February 2016

Consider the following continuous function:

defined on the closed, bounded interval .

a) Find all the critical points for .

b) Determine the absolute maximum and absolute minimum values for on the interval .

Foundations:  

Solution:

(a)

Step 1:  
To find the critical point, first we need to find .
Using the Product Rule, we have
Step 2:  
Notice is undefined when .
Now, we need to set .
So, we get .
We cross multiply to get .
Solving, we get .
Thus, the critical points for are and .

(b)

Step 1:  
We need to compare the values of at the critical points and at the endpoints of the interval.
Using the equation given, we have and .
Step 2:  
Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for is 32
and the absolute minimum value for is .
Final Answer:  
(a) and
(b) The absolute minimum value for is

Return to Sample Exam