Difference between revisions of "009A Sample Final 1, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 24: | Line 24: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We start by taking the derivative of <math>f(x)</math>. We have <math>f'(x)=3x^2-12x</math>. | + | |We start by taking the derivative of <math style="vertical-align: -5px">f(x)</math>. We have <math style="vertical-align: -5px">f'(x)=3x^2-12x</math>. |
|- | |- | ||
− | |Now, we set <math>f'(x)=0</math>. So, we have <math>0=3x(x-4)</math>. | + | |Now, we set <math style="vertical-align: -5px">f'(x)=0</math>. So, we have <math style="vertical-align: -5px">0=3x(x-4)</math>. |
|- | |- | ||
− | |Hence, we have <math>x=0</math> and <math>x=4</math>. | + | |Hence, we have <math style="vertical-align: -1px">x=0</math> and <math style="vertical-align: -1px">x=4</math>. |
|- | |- | ||
− | |So, these values of <math>x</math> break up the number line into 3 intervals: <math>(-\infty,0),(0,4),(4,\infty)</math>. | + | |So, these values of <math style="vertical-align: -1px">x</math> break up the number line into 3 intervals: <math style="vertical-align: -3px">(-\infty,0),(0,4),(4,\infty)</math>. |
|} | |} | ||
Line 38: | Line 38: | ||
|To check whether the function is increasing or decreasing in these intervals, we use testpoints. | |To check whether the function is increasing or decreasing in these intervals, we use testpoints. | ||
|- | |- | ||
− | |For <math>x=-1 | + | |For <math style="vertical-align: -5px">x=-1,~f'(x)=15>0</math>. |
|- | |- | ||
− | |For <math>x=1 | + | |For <math style="vertical-align: -5px">x=1,~f'(x)=-9<0</math>. |
|- | |- | ||
− | |For <math>x=5 | + | |For <math style="vertical-align: -5px">x=5,~f'(x)=15>0</math>. |
|- | |- | ||
− | |Thus, <math>f(x)</math> is increasing on <math>(-\infty,0),(4,\infty)</math> and decreasing on <math>(0,4)</math>. | + | |Thus, <math style="vertical-align: -5px">f(x)</math> is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty)</math> and decreasing on <math style="vertical-align: -5px">(0,4)</math>. |
|} | |} | ||
Line 52: | Line 52: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |The local maximum occurs at <math>x=0</math> and the local minimum occurs at <math>x=4</math>. | + | |The local maximum occurs at <math style="vertical-align: -1px">x=0</math> and the local minimum occurs at <math style="vertical-align: -1px">x=4</math>. |
|} | |} | ||
Line 58: | Line 58: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |So, the local maximum value is <math>f(0)=5</math> and the local minimum value is <math>f(4)=-27</math>. | + | |So, the local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27</math>. |
|} | |} | ||
Line 66: | Line 66: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |To find the intervals when the function is concave up or concave down, we need to find <math>f''(x)</math>. | + | |To find the intervals when the function is concave up or concave down, we need to find <math style="vertical-align: -5px">f''(x)</math>. |
|- | |- | ||
− | |We have <math>f''(x)=6x-12</math>. | + | |We have <math style="vertical-align: -5px">f''(x)=6x-12</math>. |
|- | |- | ||
− | |We set <math>f''(x)=0</math>. | + | |We set <math style="vertical-align: -5px">f''(x)=0</math>. |
|- | |- | ||
− | |So, we have <math>0=6x-12</math>. Hence, <math>x=2</math>. | + | |So, we have <math style="vertical-align: -1px">0=6x-12</math>. Hence, <math style="vertical-align: -1px">x=2</math>. |
|- | |- | ||
− | |This value breaks up the number line into two intervals: <math>(-\infty,2),(2,\infty)</math>. | + | |This value breaks up the number line into two intervals: <math style="vertical-align: -5px">(-\infty,2),(2,\infty)</math>. |
|} | |} | ||
Line 82: | Line 82: | ||
|Again, we use test points in these two intervals. | |Again, we use test points in these two intervals. | ||
|- | |- | ||
− | |For <math>x=0</math>, we have <math>f''(x)=-12<0</math>. | + | |For <math style="vertical-align: -1px">x=0</math>, we have <math style="vertical-align: -5px">f''(x)=-12<0</math>. |
|- | |- | ||
− | |For <math>x=3</math>, we have <math>f''(x)=6>0</math>. | + | |For <math style="vertical-align: -1px">x=3</math>, we have <math style="vertical-align: -5px">f''(x)=6>0</math>. |
|- | |- | ||
− | |Thus, <math>f(x)</math> is concave up on the interval <math>(2,\infty)</math> and concave down on the interval <math>(-\infty,2)</math>. | + | |Thus, <math style="vertical-align: -5px">f(x)</math> is concave up on the interval <math style="vertical-align: -5px">(2,\infty)</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2)</math>. |
|} | |} | ||
Line 94: | Line 94: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | Using the information from part '''(c)''', there is one inflection point that occurs at <math>x=2</math>. | + | | Using the information from part '''(c)''', there is one inflection point that occurs at <math style="vertical-align: -1px">x=2</math>. |
|- | |- | ||
− | |Now, we have <math>f(2)=8-24+5=-11</math>. | + | |Now, we have <math style="vertical-align: -5px">f(2)=8-24+5=-11</math>. |
|- | |- | ||
− | |So, the inflection point is <math>(2,-11)</math>. | + | |So, the inflection point is <math style="vertical-align: -5px">(2,-11)</math>. |
|} | |} | ||
Line 112: | Line 112: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math>f(x)</math> is increasing on <math>(-\infty,0),(4,\infty)</math> and decreasing on <math>(0,4)</math>. | + | |'''(a)''' <math style="vertical-align: -5px">f(x)</math> is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty)</math> and decreasing on <math style="vertical-align: -5px">(0,4)</math>. |
|- | |- | ||
− | |'''(b)''' The local maximum value is <math>f(0)=5</math> and the local minimum value is <math>f(4)=-27</math>. | + | |'''(b)''' The local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27</math>. |
|- | |- | ||
− | |'''(c)''' <math>f(x)</math> is concave up on the interval <math>(2,\infty)</math> and concave down on the interval <math>(-\infty,2)</math>. | + | |'''(c)''' <math style="vertical-align: -5px">f(x)</math> is concave up on the interval <math style="vertical-align: -5px">(2,\infty)</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2)</math>. |
|- | |- | ||
− | |'''(d)''' <math>(2,-11)</math> | + | |'''(d)''' <math style="vertical-align: -5px">(2,-11)</math> |
|- | |- | ||
− | |'''(e)''' See | + | |'''(e)''' See Step 1 for graph. |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 15:56, 22 February 2016
Given the function ,
a) Find the intervals in which the function increases or decreases.
b) Find the local maximum and local minimum values.
c) Find the intervals in which the function concaves upward or concaves downward.
d) Find the inflection point(s).
e) Use the above information (a) to (d) to sketch the graph of .
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
We start by taking the derivative of . We have . |
Now, we set . So, we have . |
Hence, we have and . |
So, these values of break up the number line into 3 intervals: . |
Step 2: |
---|
To check whether the function is increasing or decreasing in these intervals, we use testpoints. |
For . |
For . |
For . |
Thus, is increasing on and decreasing on . |
(b)
Step 1: |
---|
The local maximum occurs at and the local minimum occurs at . |
Step 2: |
---|
So, the local maximum value is and the local minimum value is . |
(c)
Step 1: |
---|
To find the intervals when the function is concave up or concave down, we need to find . |
We have . |
We set . |
So, we have . Hence, . |
This value breaks up the number line into two intervals: . |
Step 2: |
---|
Again, we use test points in these two intervals. |
For , we have . |
For , we have . |
Thus, is concave up on the interval and concave down on the interval . |
(d)
Step 1: |
---|
Using the information from part (c), there is one inflection point that occurs at . |
Now, we have . |
So, the inflection point is . |
(e)
Step 1: |
---|
Insert sketch here. |
Final Answer: |
---|
(a) is increasing on and decreasing on . |
(b) The local maximum value is and the local minimum value is . |
(c) is concave up on the interval and concave down on the interval . |
(d) |
(e) See Step 1 for graph. |