Difference between revisions of "009A Sample Final 1, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam">Given the function <math>f(x)=x^3-6x^2+5</math>, | + | <span class="exam">Given the function <math style="vertical-align: -3px">f(x)=x^3-6x^2+5</math>, |
<span class="exam">a) Find the intervals in which the function increases or decreases. | <span class="exam">a) Find the intervals in which the function increases or decreases. | ||
Line 9: | Line 9: | ||
<span class="exam">d) Find the inflection point(s). | <span class="exam">d) Find the inflection point(s). | ||
− | <span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math>y=f(x)</math>. | + | <span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 15:38, 22 February 2016
Given the function ,
a) Find the intervals in which the function increases or decreases.
b) Find the local maximum and local minimum values.
c) Find the intervals in which the function concaves upward or concaves downward.
d) Find the inflection point(s).
e) Use the above information (a) to (d) to sketch the graph of .
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
We start by taking the derivative of . We have . |
Now, we set . So, we have . |
Hence, we have and . |
So, these values of break up the number line into 3 intervals: . |
Step 2: |
---|
To check whether the function is increasing or decreasing in these intervals, we use testpoints. |
For , . |
For , . |
For , . |
Thus, is increasing on and decreasing on . |
(b)
Step 1: |
---|
The local maximum occurs at and the local minimum occurs at . |
Step 2: |
---|
So, the local maximum value is and the local minimum value is . |
(c)
Step 1: |
---|
To find the intervals when the function is concave up or concave down, we need to find . |
We have . |
We set . |
So, we have . Hence, . |
This value breaks up the number line into two intervals: . |
Step 2: |
---|
Again, we use test points in these two intervals. |
For , we have . |
For , we have . |
Thus, is concave up on the interval and concave down on the interval . |
(d)
Step 1: |
---|
Using the information from part (c), there is one inflection point that occurs at . |
Now, we have . |
So, the inflection point is . |
(e)
Step 1: |
---|
Insert sketch here. |
Final Answer: |
---|
(a) is increasing on and decreasing on . |
(b) The local maximum value is and the local minimum value is . |
(c) is concave up on the interval and concave down on the interval . |
(d) |
(e) See part (e) above for graph. |