Difference between revisions of "009A Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First note that <math>f(0)=7</math>.
+
|First note that <math style="vertical-align: -3px">f(0)=7</math>.
 
|-
 
|-
|Also, <math>f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5)</math>.
+
|Also, <math style="vertical-align: -3px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5)</math>.
 
|-
 
|-
|Since <math>-1\leq \sin(x) \leq 1</math>,
+
|Since <math style="vertical-align: -3px">-1\leq \sin(x) \leq 1</math>,
 
|-
 
|-
|<math>-2\leq -2\sin(x) \leq 2</math>.
+
|
 +
::<math>-2\leq -2\sin(x) \leq 2</math>.
 
|-
 
|-
|Thus, <math>-10\leq f(-5) \leq -6</math> and hence <math>f(-5)<0</math>.
+
|Thus, <math style="vertical-align: -5px">-10\leq f(-5) \leq -6</math> and hence <math style="vertical-align: -5px">f(-5)<0</math>.
 
|}
 
|}
  
Line 34: Line 35:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since <math>f(-5)<0</math> and <math>f(0)>0</math>, there exists <math>x</math> with <math>-5<x<0</math> such that  
+
|Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0</math>, there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that  
 
|-
 
|-
|<math>f(x)=0</math> by the Intermediate Value Theorem. Hence, <math>f(x)</math> has at least one zero.
+
|<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero.
 
|}
 
|}
  
Line 44: Line 45:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We have <math>f'(x)=3-2\cos(x)</math>. Since <math>-1\leq \cos(x)\leq 1</math>,
+
|We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x)</math>. Since <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1</math>,
 
|-
 
|-
|<math>-2 \leq -2\cos(x)\leq 2</math>. So, <math>1\leq f'(x) \leq 5</math>.
+
|<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2</math>. So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5</math>.
 
|-
 
|-
|Therefore, <math>f'(x)</math> is always positive.
+
|Therefore, <math style="vertical-align: -5px">f'(x)</math> is always positive.
 
|}
 
|}
  
Line 54: Line 55:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since <math>f'(x)</math> is always positive, <math>f(x)</math> is an increasing function.
+
|Since <math style="vertical-align: -3px">f'(x)</math> is always positive, <math style="vertical-align: -3px">f(x)</math> is an increasing function.
 
|-
 
|-
|Thus, <math>f(x)</math> has at most one zero.  
+
|Thus, <math style="vertical-align: -3px">f(x)</math> has at most one zero.  
 
|}
 
|}
  
Line 62: Line 63:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' Since <math>f(-5)<0</math> and <math>f(0)>0</math>, there exists <math>x</math> with <math>-5<x<0</math> such that  
+
|'''(a)''' Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0</math>, there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that  
 
|-
 
|-
|<math>f(x)=0</math> by the Intermediate Value Theorem. Hence, <math>f(x)</math> has at least one zero.
+
|<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero.
 
|-
 
|-
|'''(b)''' Since <math>f'(x)</math> is always positive, <math>f(x)</math> is an increasing function.
+
|'''(b)''' Since <math style="vertical-align: -3px">f'(x)</math> is always positive, <math style="vertical-align: -3px">f(x)</math> is an increasing function.
 
|-
 
|-
|Thus, <math>f(x)</math> has at most one zero.  
+
|Thus, <math style="vertical-align: -3px">f(x)</math> has at most one zero.
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:22, 22 February 2016

Consider the following function:

a) Use the Intermediate Value Theorem to show that has at least one zero.

b) Use the Mean Value Theorem to show that has at most one zero.

Foundations:  

Solution:

(a)

Step 1:  
First note that .
Also, .
Since ,
.
Thus, and hence .
Step 2:  
Since and , there exists with such that
by the Intermediate Value Theorem. Hence, has at least one zero.

(b)

Step 1:  
We have . Since ,
. So, .
Therefore, is always positive.
Step 2:  
Since is always positive, is an increasing function.
Thus, has at most one zero.
Final Answer:  
(a) Since and , there exists with such that
by the Intermediate Value Theorem. Hence, has at least one zero.
(b) Since is always positive, is an increasing function.
Thus, has at most one zero.

Return to Sample Exam