Difference between revisions of "009A Sample Final 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 20: | Line 20: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First note that <math>f(0)=7</math>. | + | |First note that <math style="vertical-align: -3px">f(0)=7</math>. |
|- | |- | ||
− | |Also, <math>f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5)</math>. | + | |Also, <math style="vertical-align: -3px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5)</math>. |
|- | |- | ||
− | |Since <math>-1\leq \sin(x) \leq 1</math>, | + | |Since <math style="vertical-align: -3px">-1\leq \sin(x) \leq 1</math>, |
|- | |- | ||
− | |<math>-2\leq -2\sin(x) \leq 2</math>. | + | | |
+ | ::<math>-2\leq -2\sin(x) \leq 2</math>. | ||
|- | |- | ||
− | |Thus, <math>-10\leq f(-5) \leq -6</math> and hence <math>f(-5)<0</math>. | + | |Thus, <math style="vertical-align: -5px">-10\leq f(-5) \leq -6</math> and hence <math style="vertical-align: -5px">f(-5)<0</math>. |
|} | |} | ||
Line 34: | Line 35: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Since <math>f(-5)<0</math> and <math>f(0)>0</math>, there exists <math>x</math> with <math>-5<x<0</math> such that | + | |Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0</math>, there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that |
|- | |- | ||
− | |<math>f(x)=0</math> by the Intermediate Value Theorem. Hence, <math>f(x)</math> has at least one zero. | + | |<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero. |
|} | |} | ||
Line 44: | Line 45: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We have <math>f'(x)=3-2\cos(x)</math>. Since <math>-1\leq \cos(x)\leq 1</math>, | + | |We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x)</math>. Since <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1</math>, |
|- | |- | ||
− | |<math>-2 \leq -2\cos(x)\leq 2</math>. So, <math>1\leq f'(x) \leq 5</math>. | + | |<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2</math>. So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5</math>. |
|- | |- | ||
− | |Therefore, <math>f'(x)</math> is always positive. | + | |Therefore, <math style="vertical-align: -5px">f'(x)</math> is always positive. |
|} | |} | ||
Line 54: | Line 55: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Since <math>f'(x)</math> is always positive, <math>f(x)</math> is an increasing function. | + | |Since <math style="vertical-align: -3px">f'(x)</math> is always positive, <math style="vertical-align: -3px">f(x)</math> is an increasing function. |
|- | |- | ||
− | |Thus, <math>f(x)</math> has at most one zero. | + | |Thus, <math style="vertical-align: -3px">f(x)</math> has at most one zero. |
|} | |} | ||
Line 62: | Line 63: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' Since <math>f(-5)<0</math> and <math>f(0)>0</math>, there exists <math>x</math> with <math>-5<x<0</math> such that | + | |'''(a)''' Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0</math>, there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that |
|- | |- | ||
− | |<math>f(x)=0</math> by the Intermediate Value Theorem. Hence, <math>f(x)</math> has at least one zero. | + | |<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero. |
|- | |- | ||
− | |'''(b)''' Since <math>f'(x)</math> is always positive, <math>f(x)</math> is an increasing function. | + | |'''(b)''' Since <math style="vertical-align: -3px">f'(x)</math> is always positive, <math style="vertical-align: -3px">f(x)</math> is an increasing function. |
|- | |- | ||
− | |Thus, <math>f(x)</math> has at most one zero. | + | |Thus, <math style="vertical-align: -3px">f(x)</math> has at most one zero. |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 15:22, 22 February 2016
Consider the following function:
a) Use the Intermediate Value Theorem to show that has at least one zero.
b) Use the Mean Value Theorem to show that has at most one zero.
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
First note that . |
Also, . |
Since , |
|
Thus, and hence . |
Step 2: |
---|
Since and , there exists with such that |
by the Intermediate Value Theorem. Hence, has at least one zero. |
(b)
Step 1: |
---|
We have . Since , |
. So, . |
Therefore, is always positive. |
Step 2: |
---|
Since is always positive, is an increasing function. |
Thus, has at most one zero. |
Final Answer: |
---|
(a) Since and , there exists with such that |
by the Intermediate Value Theorem. Hence, has at least one zero. |
(b) Since is always positive, is an increasing function. |
Thus, has at most one zero. |