Difference between revisions of "009A Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
|Insert diagram.
 
|Insert diagram.
 
|-
 
|-
|From the diagram, we have <math>30^2+h^2=s^2</math> by the Pythagorean Theorem.
+
|From the diagram, we have <math style="vertical-align: -2px">30^2+h^2=s^2</math> by the Pythagorean Theorem.
 
|-
 
|-
 
|Taking derivatives, we get  
 
|Taking derivatives, we get  
 
|-
 
|-
|<math>2hh'=2ss'</math>.
+
|
 +
::<math>2hh'=2ss'</math>.
 
|}
 
|}
  
Line 26: Line 27:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|If <math>s=50</math>, then <math>h=\sqrt{50^2-30^2}=40</math>.
+
|If <math style="vertical-align: -1px">s=50</math>, then <math style="vertical-align: -3px">h=\sqrt{50^2-30^2}=40</math>.
 
|-
 
|-
|So, we have <math>2(40)6=2(50)s'</math>.
+
|So, we have <math style="vertical-align: -5px">2(40)6=2(50)s'</math>.
 
|-
 
|-
|Solving for <math>s'</math>, we get <math>s'=\frac{24}{5} </math>m/s.
+
|Solving for <math style="vertical-align: 0px">s'</math>, we get <math style="vertical-align: -14px">s'=\frac{24}{5} </math>m/s.
 
|}
 
|}
  

Revision as of 14:11, 22 February 2016

A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing

when 50 (meters) of the string has been let out?

Foundations:  

Solution:

Step 1:  
Insert diagram.
From the diagram, we have by the Pythagorean Theorem.
Taking derivatives, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2hh'=2ss'} .
Step 2:  
If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=50} , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h=\sqrt{50^2-30^2}=40} .
So, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2(40)6=2(50)s'} .
Solving for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s'} , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s'=\frac{24}{5} } m/s.
Final Answer:  
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s'=\frac{24}{5} } m/s

Return to Sample Exam