Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 25: | Line 25: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |We first calculate <math style="vertical-align: - | + | |We first calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)</math>. We have |
|- | |- | ||
| | | | ||
| Line 40: | Line 40: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we calculate <math style="vertical-align: - | + | |Now, we calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^-}f(x)</math>. We have |
|- | |- | ||
| | | | ||
| Line 55: | Line 55: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |Now, we calculate <math style="vertical-align:- | + | |Now, we calculate <math style="vertical-align: -3px">f(3)</math>. We have |
|- | |- | ||
| − | |<math>f(3)=4\sqrt{3+1}=8</math>. | + | | |
| + | ::<math>f(3)=4\sqrt{3+1}=8</math>. | ||
|- | |- | ||
| − | |Since <math style="vertical-align: - | + | |Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous. |
|} | |} | ||
| Line 109: | Line 110: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |Since <math>\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>, | + | |Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>, |
|- | |- | ||
| − | |<math>f(x)</math> is differentiable at <math>x=3</math>. | + | |<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3</math>. |
|} | |} | ||
| Line 117: | Line 118: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' Since <math>\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3) | + | |'''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous. |
|- | |- | ||
| − | |'''(b)''' Since <math>\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>, | + | |'''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>, |
|- | |- | ||
| − | |<math>f(x)</math> is differentiable at <math>x=3</math>. | + | | |
| + | ::<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3</math>. | ||
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 14:56, 22 February 2016
Consider the following piecewise defined function:
a) Show that is continuous at .
b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .
| Foundations: |
|---|
Solution:
(a)
| Step 1: |
|---|
| We first calculate . We have |
|
|
| Step 2: |
|---|
| Now, we calculate . We have |
|
|
| Step 3: |
|---|
| Now, we calculate . We have |
|
| Since is continuous. |
(b)
| Step 1: |
|---|
| We need to use the limit definition of derivative and calculate the limit from both sides. So, we have |
|
|
| Step 2: |
|---|
| Now, we have |
|
|
| Step 3: |
|---|
| Since , |
| is differentiable at . |
| Final Answer: |
|---|
| (a) Since is continuous. |
| (b) Since , |
|