Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
|We begin by factoring the numerator. We have
 
|We begin by factoring the numerator. We have
 
|-
 
|-
|<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}</math>.
+
|
 +
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}</math>.
 
|-
 
|-
|So, we can cancel <math>x+3</math> in the numerator and denominator. Thus, we have
+
|So, we can cancel <math style="vertical-align: -2px">x+3</math> in the numerator and denominator. Thus, we have
 
|-
 
|-
|<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)}{2}</math>.
+
|
 +
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)}{2}</math>.
 
|}
 
|}
  
Line 32: Line 34:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we can just plug in <math>x=-3</math> to get  
+
|Now, we can just plug in <math style="vertical-align: 0px">x=-3</math> to get  
|-
 
|<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9</math>.
 
 
|-
 
|-
 
|
 
|
 +
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9</math>.
 
|}
 
|}
  
Line 69: Line 70:
 
| We have  
 
| We have  
 
|-
 
|-
|<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}</math>.
+
|
 +
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}</math>.
 
|-
 
|-
|Since we are looking at the limit as <math>x</math> goes to negative infinity, we have <math>\sqrt{x^2}=-x</math>.
+
|Since we are looking at the limit as <math>x</math> goes to negative infinity, we have <math style="vertical-align: -3px">\sqrt{x^2}=-x</math>.
 
|-
 
|-
 
|So, we have
 
|So, we have
 
|-
 
|-
|<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math>.
+
|
 +
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math>.
 
|}
 
|}
  
Line 83: Line 86:
 
| We simplify to get  
 
| We simplify to get  
 
|-
 
|-
|<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math>
+
|
 +
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
 
|-
 
|-
|<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}</math>.
+
|
 +
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}</math>.
 
|}
 
|}
  

Revision as of 14:38, 22 February 2016

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

a)

b)

c)

Foundations:  
Review L'Hopital's Rule

Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have
.
So, we can cancel in the numerator and denominator. Thus, we have
.
Step 2:  
Now, we can just plug in to get
.

(b)

Step 1:  
We proceed using L'Hopital's Rule. So, we have
Step 2:  
This limit is .

(c)

Step 1:  
We have
.
Since we are looking at the limit as goes to negative infinity, we have .
So, we have
.
Step 2:  
We simplify to get
So, we have
.
Final Answer:  
(a) .
(b)
(c)

Return to Sample Exam