Difference between revisions of "009C Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 18: Line 18:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we switch to the limit to <math>x</math> so that we can use L'Hopital's rule.
+
|First, we switch to the limit to <math style="vertical-align: 0px">x</math> so that we can use L'Hopital's rule.
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 37: Line 37:
 
|Hence, we have
 
|Hence, we have
 
|-
 
|-
|<math>\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}=\frac{-2}{5}</math>.
+
|
 +
::<math>\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}=\frac{-2}{5}</math>.
 
|}
 
|}
  
Line 45: Line 46:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Again, we switch to the limit to <math>x</math> so that we can use L'Hopital's rule.
+
|Again, we switch to the limit to <math style="vertical-align: 0px">x</math> so that we can use L'Hopital's rule.
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 64: Line 65:
 
|Hence, we have
 
|Hence, we have
 
|-
 
|-
|<math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1</math>.
+
|
 +
::<math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1</math>.
 
|}
 
|}
  
Line 70: Line 72:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math>\frac{-2}{5}</math>
+
|'''(a)''' <math style="vertical-align: -14px">\frac{-2}{5}</math>
 
|-
 
|-
|'''(b)''' <math>1</math>  
+
|'''(b)''' <math style="vertical-align: -3px">1</math>  
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:27, 22 February 2016

Compute

a)

b)

Foundations:  
Review L'Hopital's Rule

Solution:

(a)

Step 1:  
First, we switch to the limit to so that we can use L'Hopital's rule.
So, we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \infty }{\frac {3-2x^{2}}{5x^{2}+x+1}}}&{\overset {l'H}{=}}&\displaystyle {\lim _{x\rightarrow \infty }{\frac {-4x}{10x+1}}}\\&&\\&{\overset {l'H}{=}}&\displaystyle {\frac {-4}{10}}\\&&\\&=&\displaystyle {\frac {-2}{5}}\end{array}}}
Step 2:  
Hence, we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{n\rightarrow \infty }{\frac {3-2n^{2}}{5n^{2}+n+1}}={\frac {-2}{5}}} .

(b)

Step 1:  
Again, we switch to the limit to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} so that we can use L'Hopital's rule.
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\frac{1}{x}}{\frac{3}{3x}}}\\ &&\\ & = & \displaystyle{\lim_{x \rightarrow \infty} 1}\\ &&\\ & = & 1 \end{array}}
Step 2:  
Hence, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1} .
Final Answer:  
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-2}{5}}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}

Return to Sample Exam