Difference between revisions of "009C Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 39: Line 39:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Thus, we have <math>|x|<1</math> and the radius of convergence of this series is <math>1</math>.
+
|Thus, we have <math style="vertical-align: -5px">|x|<1</math> and the radius of convergence of this series is <math style="vertical-align: -1px">1</math>.
 
|}
 
|}
  
Line 47: Line 47:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|From part (a), we know the series converges inside the interval <math>(-1,1)</math>.
+
|From part (a), we know the series converges inside the interval <math style="vertical-align: -5px">(-1,1)</math>.
 
|-
 
|-
 
|Now, we need to check the endpoints of the interval for convergence.
 
|Now, we need to check the endpoints of the interval for convergence.
Line 57: Line 57:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|For <math>x=1</math>, the series becomes <math>\sum_{n=1}^{\infty}n</math>, which diverges by the Divergence Test.
+
|For <math style="vertical-align: -2px">x=1</math>, the series becomes <math>\sum_{n=1}^{\infty}n</math>, which diverges by the Divergence Test.
 
|}
 
|}
  
Line 63: Line 63:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|For <math>x=-1</math>, the series becomes <math>\sum_{n=1}^{\infty}(-1)^n n</math>, which diverges by the Divergence Test.
+
|For <math style="vertical-align: -2px">x=-1</math>, the series becomes <math>\sum_{n=1}^{\infty}(-1)^n n</math>, which diverges by the Divergence Test.
 
|-
 
|-
|Thus, the interval of convergence is <math>(-1,1)</math>.
+
|Thus, the interval of convergence is <math style="vertical-align: -5px">(-1,1)</math>.
 
|}
 
|}
  
Line 73: Line 73:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Recall we have the geometric series formula <math>\frac{1}{1-x}=\sum_{n=0}^{\infty} x^n</math> for <math>|x|<1</math>.  
+
|Recall that we have the geometric series formula <math>\frac{1}{1-x}=\sum_{n=0}^{\infty} x^n</math> for <math>|x|<1</math>.  
 
|-
 
|-
 
|Now, we take the derivative of both sides of the last equation to get
 
|Now, we take the derivative of both sides of the last equation to get
 
|-
 
|-
|<math>\frac{1}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n-1}</math>.
+
|
 +
::<math>\frac{1}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n-1}</math>.
 
|}
 
|}
  
Line 83: Line 84:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we multiply the last equation in Step 1 by <math>x</math>.  
+
|Now, we multiply the last equation in Step 1 by <math style="vertical-align: 0px">x</math>.  
 
|-
 
|-
 
|So, we have <math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x)</math>.
 
|So, we have <math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x)</math>.
Line 93: Line 94:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math>1</math>
+
|'''(a)''' <math style="vertical-align: -3px">1</math>
 
|-
 
|-
|'''(b)''' <math>(-1,1)</math>
+
|'''(b)''' <math style="vertical-align: -3px">(-1,1)</math>
 
|-
 
|-
|'''(c)''' <math>f(x)=\frac{x}{(1-x)^2}</math>
+
|'''(c)''' <math style="vertical-align: -18px">f(x)=\frac{x}{(1-x)^2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:00, 22 February 2016

Let

a) Find the radius of convergence of the power series.

b) Determine the interval of convergence of the power series.

c) Obtain an explicit formula for the function .

Foundations:  
Review ratio test.

Solution:

(a)

Step 1:  
To find the radius of convergence, we use the ratio test. We have
Step 2:  
Thus, we have and the radius of convergence of this series is .

(b)

Step 1:  
From part (a), we know the series converges inside the interval .
Now, we need to check the endpoints of the interval for convergence.
Step 2:  
For , the series becomes , which diverges by the Divergence Test.
Step 3:  
For , the series becomes , which diverges by the Divergence Test.
Thus, the interval of convergence is .

(c)

Step 1:  
Recall that we have the geometric series formula for .
Now, we take the derivative of both sides of the last equation to get
.
Step 2:  
Now, we multiply the last equation in Step 1 by .
So, we have .
Thus, .
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam