Difference between revisions of "009C Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 64: Line 64:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Since <math>c_n=\frac{f^{(n)}(a)}{n!} </math>, the Taylor polynomial of degree 4 of <math>f(x)=\cos^2x</math> is  
+
|Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!} </math>, the Taylor polynomial of degree 4 of <math style="vertical-align: -5px">f(x)=\cos^2x</math> is  
 
|
 
|
 
|-
 
|-
|<math>T_4(x)=\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math>.
+
|
 +
::<math>T_4(x)=\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math>.
 
|}
 
|}
  
Line 73: Line 74:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|<math>T_4(x)=\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math>
+
|<math>\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:51, 22 February 2016

Find the Taylor polynomial of degree 4 of at .

Foundations:  

Solution:

Step 1:  
First, we make a table to find the coefficients of the Taylor polynomial.
Step 2:  
Since , the Taylor polynomial of degree 4 of is
.
Final Answer:  

Return to Sample Exam